Skip to main content

Advertisement

Log in

Energy efficiency of ropeways: a model-based analysis

  • Original Paper
  • Published:
Public Transport Aims and scope Submit manuscript

Abstract

Ropeways are one of the most effective way to transport passengers or goods within minimum space requirements and with high transportation capacities in conjunction with a high safety level. Hence, ropeways are preferably used in mountainous regions as well as for urban transport. However, due to their functional principle, ropeways dissipate plenty of energy based on damping and friction effects. This paper focuses on the analysis of the energy consumption of ropeways and presents possible improvements, which may reduce the total energy consumption up to 20%. In terms of climate change and green marketing this could be one key point to implement sustainable tourism in ski regions. First, an analytical model is described, which enables the analysis of monocable ropeway systems in a stationary state. The model delivers physical values like the forces at the towers and the power consumption, which is separated into parts for transportation, the power loss of the drive, the power consumption of the stations and the power loss of the sheaves. As an improvement to the ropeway standard DIN EN 12930, the rolling resistance coefficient will be considered as velocity-dependent. The model is parametrized by measurement data of a representative ropeway. Second, the main parameters of the mechanical system such as the velocity or the number of vehicles are analyzed concerning their influence on the energy consumption. Finally, three possible energy-saving strategies are described, which provide a significant reduction of the energy consumption without any modifications in the mechanical system or by reducing the transport capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alshalalfah B, Shalaby A, Dale S (2014) Experiences with aerial ropeway transportation systems in the urban environment. J Urban Plann Dev 140(1):04013001. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000158

    Article  Google Scholar 

  • Alshalalfah B, Shalaby A, Dale S, Othman F (2012) Aerial ropeway transportation systems in the urban environment: State of the art. J Transp Eng 138(3):253–262. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000330

    Article  Google Scholar 

  • Brownjohn J (1998) Dynamics of an aerial cableway system. Eng Struct 20(9):826–836. https://doi.org/10.1016/S0141-0296(97)00113-2

    Article  Google Scholar 

  • Bryja D, Knawa M (2011) Computational model of an inclined aerial ropeway and numerical method for analyzing nonlinear cable-car interaction. Comput Struct 89(21):1895–1905

    Article  Google Scholar 

  • Butler R (1999) Sustainable tourism: a state-of-the-art review [le tourisme durable: Un état de la question]. Tour Geogr 1(1):7–25

    Article  Google Scholar 

  • DIN-Normenausschuss Fahrweg und Schienenfahrzeuge (2015), ‘Safety requirements for cableway installations designed to carry persons - Calculations; German version EN12930’

  • DIN-Normenausschuss Grundlagen des Umweltschutzes (NAGUS) (2011), ‘Energy Management Systems-Requirements with Guidance for Use ISO50001’

  • Duglio S, Beltramo R (2016) Environmental management and sustainable labels in the ski industry: a critical review. Sustainability 8(9):851. https://doi.org/10.3390/su8090851

    Article  Google Scholar 

  • Engel E (1977) Über den Laufwiderstand gefütterter Seilrollen. Forschungsbericht, Institut für Verkehrswissenschaften TU Wien 6:16–19

    Google Scholar 

  • Engel E (1986) Die Reibung von Förderseil-Tragrollen. Forschungsbericht, Institut für Verkehrswissenschaften TU Wien 12:23–28

    Google Scholar 

  • European Commission (2019) Report from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions

  • Günther WA (1999) ‘Seilbahntechnik’, Lehrstuhl für Fördertechnik Materialfluß Logistik - TU München

  • Hamblin M, Stachowiak G (1995) Environmental and sheave material effects on the wear of roping wire and sheave. Tribol Int 28(5):307–315. https://doi.org/10.1016/0301-679X(94)00002-8

    Article  Google Scholar 

  • Hoffmann K (2009) Oscillation effects of ropeways caused by cross-wind and other influences. FME Trans 37(4):175–184

    Google Scholar 

  • Hoffmann K, Zrni N (2012) A contribution on the history of ropeways. Hist Mech Mach Sci 15:381–394

    Google Scholar 

  • Hofmann G, Baumann P (2015) Ropeway technology: analytical review of ropeways. Prellbock Verlag, Trachslau

    Google Scholar 

  • Hurel G, Laborde J, Jézéquel L (2019) Simulation of the dynamic behavior of a bi-cable ropeway with modal bases. In: Mains M, Dilworth BJ (eds) Topics in modal analysis and testing, vol 9. Springer International Publishing, Cham, pp 43–54

    Chapter  Google Scholar 

  • Kar Yan Y, Yazdanifard APDR (2014) The concept of green marketing and green product development on consumer buying approach. Global J Commer Manag Perspect 3(2):33–38

    Google Scholar 

  • Knawa-Hawryszków M (2017) Influence of motion parameters on incidence of resonant track rope vibrations in a bi-cable ropeway system. Procedia Eng 199:2549–2554

    Article  Google Scholar 

  • Lagerev AV, Lagerev IA (2019) Design of passenger aerial ropeway for urban environment. Urban Rail Transit 5(1):17–28

    Article  Google Scholar 

  • Liedl S (2000) Bewegungen und Kräfte des Seilsystems und der Fahrzeuge von Seilschwebebahnen im Fahrbetrieb. Fördertechnik, Materialfluß, Logistik, Herbert Utz Verlag, München

  • Moro A, Lonza L (2018) Electricity carbon intensity in European member states: Impacts on GHG emissions of electric vehicles. Transp Res Part D Transport Environ 64:5–14. https://doi.org/10.1016/j.trd.2017.07.012

    Article  Google Scholar 

  • Nabijou S, Hobbs R (1995) Frictional performance of wire and fibre ropes bent over sheaves. J Strain Anal Eng Design 30(1):45–57

    Article  Google Scholar 

  • Navone M, Dalla Chiara B, Blengini S, Vair E (2017) Cable driven automated people movers for urban applications: modelling the roller for investigating energy consumption. Ingegneria Ferroviaria 72:631–663

    Google Scholar 

  • Nejez J (2006) ‘Vorlesung aus Seilbahnbau’, Institut für Eisenbahnwesen und Verkehrswirtschaft - TU Graz

  • Nußbaumer C (2013) Modellbildung und Simulation der Dynamik von seilbetriebenen, automatischen Personentransportsystemen, PhD thesis, TU Graz

  • Polonsky MJ (1994) An introduction to green marketing. Electronic Green J 1(2). https://escholarship.org/uc/item/49n325b7

  • Renezeder CH, Steindl A, Troger H (2005) On the dynamics of circulating monocable aerial ropeways. PAMM 5:123–124. https://doi.org/10.1002/pamm.200510042

    Article  Google Scholar 

  • Richter T (1989) Schwingungsverhalten von Einseil-Umlaufbahnen beim Anfahren und Bremsen, PhD thesis, ETH Zürich

  • Sun Z, Han X, Shao Z (2013) A hierarchical routing protocol based on energy efficiency and chain structure for one-way aerial ropeways for underground mine. J Netw 8:2491–2497. https://doi.org/10.4304/jnw.8.11.2491-2497

    Article  Google Scholar 

  • Tezak S (2012) Modern Cableways—The Base of Mountain Sports Tourism. In: Kasimoglu M, Aydin H (eds) Strategies for tourism industry. Intech Open, pp 297–312

  • Tezak S, Sever D, Lep M (2016) Increasing the capacities of cable cars for use in public transport. J Public Transp 19(1):1–16

    Article  Google Scholar 

  • Zegg R, Küng T, Grossrieder R (2010) Energiemanagement Bergbahnen, Seilbahnen Schweiz

  • Zemskov A, Overin A, Bekher A (2019) Second life for aerial ropeways in mining in Russia and in Central Asia. Min Inf Anal Bull 3:175–183. https://doi.org/10.25018/0236-1493-2019-03-0-175-183

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Szlosarek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szlosarek, R., Yan, C., Kröger, M. et al. Energy efficiency of ropeways: a model-based analysis. Public Transp 11, 617–635 (2019). https://doi.org/10.1007/s12469-019-00212-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12469-019-00212-1

Keywords

Navigation