Skip to main content

Advertisement

Log in

Analyzing public transport in the city of Buenos Aires with MobilityDB

  • Case Study and Application
  • Published:
Public Transport Aims and scope Submit manuscript

Abstract

The General Transit Feed Specification (GTFS) is a data format widely used to share data about public transportation schedules and associated geographic information. GTFS comes in two versions: GTFS Static describing the planned itineraries and GTFS Realtime describing the actual ones. MobilityDB is a novel and free open-source moving object database, developed as a PostgreSQL and PostGIS extension, that adds spatial and temporal data types along with a large number of functions, that facilitate the analysis of mobility data. Loading GTFS data into MobilityDB is a quite complex task that, nevertheless, must be done in an ad-hoc fashion. This work describes how MobilityDB is used to analyze public transport mobility in the city of Buenos Aires, using both, static and real-time GTFS data for the Buenos Aires public transportation system. Visualizations are also produced to enhance the analysis. To the authors’ knowledge, this is the first attempt to analyze GTFS data with a moving object database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. https://www.google.com/maps.

  2. https://github.com/pabloito/MDB-Importer.

  3. https://developers.google.com/transit/gtfs/reference.

  4. https://developers.google.com/transit/gtfs-realtime/reference.

  5. https://docs.mobilitydb.com/MobilityDB/master/mobilitydb-manual.pdf.

  6. This example is based on the post https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/analyzing-gps-trajectories-at-scale-with-postgres-mobilitydb-amp/ba-p/1859278.

  7. Figure borrowed, with kind permission of the authors, from http://docs.mobilitydb.com/pub/MobilityDB_PGVision2021.pdf.

  8. Notice that the distance is a quadratic function and MobilityDB approximated it with a linear function.

  9. https://data.buenosaires.gob.ar/dataset?groups=movilidad.

  10. https://openmobilitydata.org/l/401-buenos-aires-autonomous-city-of-buenos-aires-argentina.

  11. https://www.buenosaires.gob.ar/desarrollourbano/transporte/apitransporte/api-doc.

  12. https://github.com/bmwcarit/barefoot.

  13. https://github.com/grafana/grafana.

  14. http://qgis.org.

  15. https://www.openstreetmap.org.

References

  • Agarwal A (2004) A comparison of weekend and weekday travel behavior characteristics in urban areas. Master thesis, Department of Civil and Environmental Engineering, University of South Florida. https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=1935&context=etd

  • Andersen O, Krogh BB, Thomsen C, Torp K (2014) An advanced data warehouse for integrating large sets of GPS data. In: Proceedings of the 17th international workshop on data warehousing and OLAP, DOLAP ’14. ACM, pp 13–22

  • Bakli MS, Sakr MA, Zimányi E (2019) Distributed moving object data management in MobilityDB. In: Proceedings of the 8th ACM SIGSPATIAL international workshop on analytics for big geospatial data, BigSpatial@SIGSPATIAL 2019. ACM, pp 1:1–1:10

  • Bast H, Brosi P, Storandt S (2014) Real-time movement visualization of public transit data. In: Proceedings of the 22nd ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, pp 331–340

  • Behr T, de Almeida VT, Güting RH (2006) Representation of periodic moving objects in databases. In: 14th ACM international symposium on geographic information systems, ACM-GIS 2006, November 10–11, 2006, Arlington. ACM, pp 43–50

  • Braga M, Santos MY, Moreira AJC (2014) Integrating public transportation data: creation and editing of GTFS data. In: New perspectives in information systems and technologies, vol 2 WorldCIST’14, Advances in Intelligent Systems and Computing, vol 276. Springer, pp 53–62

  • da Silva MCT, Times VC, de Macêdo JAF, Renso C (2015) SWOT: a conceptual data warehouse model for semantic trajectories. In: Proceedings of the 18th ACM international workshop on data warehousing and OLAP, DOLAP 2015, pp 11–14

  • de Queiroz ARM, Santos VB, Nascimento DC, Pires CES (2019) Conformity analysis of GTFS routes and bus trajectories. In: XXXIV Simpósio Brasileiro de Banco de Dados, SBBD 2019. SBC, pp 199–204

  • Fu Z, Tian Z, Xu Y, Qiao C (2016) A two-step clustering approach to extract locations from individual GPS trajectory data. ISPRS Int J Geo-Inf 5(10):166

    Article  Google Scholar 

  • Güting RH, Schneider M (2005) Moving objects databases. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Hohmann S, Geistefeldt J (2016) Traffic flow quality from the user’s perspective. Transp Res Proc 15:721–731. International Symposium on Enhancing Highway Performance (ISEHP)

  • Kaeoruean K, Phithakkitnukoon S, Demissie MG, Kattan L, Ratti C (2020) Analysis of demand-supply gaps in public transit systems based on census and GTFS data: a case study of Calgary, Canada. Public Transp 12(3):483–516. https://doi.org/10.1007/s12469-020-00252-y

    Article  Google Scholar 

  • Krogh B, Andersen O, Torp K (2012) Trajectories for novel and detailed traffic information. In: Proceedings of the 3rd ACM SIGSPATIAL international workshop on geostreaming, IWGS ’12. ACM, pp 32–39

  • Kunama N, Worapan M, Phithakkitnukoon S, Demissie MG (2017) GTFS-Viz: tool for preprocessing and visualizing GTFS data. In: Proceedings of the 2017 ACM international joint conference on pervasive and ubiquitous computing and proceedings of the 2017 ACM international symposium on wearable computers, UbiComp/ISWC. ACM, pp 388–396

  • Leonardi L, Orlando S, Raffaetà A, Roncato A, Silvestri C, Andrienko GL, Andrienko NV (2014) A general framework for trajectory data warehousing and visual OLAP. GeoInformatica 18(2):273–312. https://doi.org/10.1007/s10707-013-0181-3

    Article  Google Scholar 

  • Meng C, Yi X, Su L, Gao J, Zheng Y (2017) City-wide traffic volume inference with loop detector data and taxi trajectories. In: Proceedings of the 25th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM. https://doi.org/10.1145/3139958.3139984

  • Parent C, Spaccapietra S, Renso C, Andrienko G, Andrienko N, Bogorny V, Damiani ML, Gkoulalas-Divanis A, Macedo J, Pelekis N, Theodoridis Y, Yan Z (2013) Semantic trajectories modeling and analysis. ACM Comput Surv 45(4):42:1-42:32

    Article  Google Scholar 

  • Pelekis N, Theodoridis Y (2014) Mobility data management and exploration. Springer, New York. https://doi.org/10.1007/978-1-4939-0392-4

    Book  Google Scholar 

  • Pelekis N, Theodoridis Y, Vosinakis S, Panayiotopoulos T (2006) Hermes—a framework for location-based data management. In: Proceedings of the 10th international conference on extending database technology, EDBT 2006, Lecture Notes in Computer Science, vol. 3896. Springer, pp 1130–1134

  • Renso C, Spaccapietra S, Zimányi E (eds) (2013) Mobility data: modeling, management, and understanding. Cambridge University Press, Cambridge

  • Spaccapietra S, Parent C, Spinsanti L (2013) Trajectories and their representations. In: Renso C, Spaccapietra S, Zimányi E (eds) Mobility data: modeling, management, and understanding. Cambridge University Press, pp 3–22

  • Vaisman A, Zimányi E (2014) Data warehouse systems: design and implementation. Springer, New York

    Google Scholar 

  • Vaisman AA, Zimányi E (2019) Mobility data warehouses. ISPRS Int J Geo-Inf 8(4):170

    Article  Google Scholar 

  • Vuurstaek J, Cich G, Knapen L, Ectors W, Yasar A, Bellemans T, Janssens D (2020) GTFS bus stop mapping to the OSM network. Future Gen Comput Syst 110:393–406

    Article  Google Scholar 

  • Wei H, Wang Y, Forman G, Zhu Y (2013) Map matching: comparison of approaches using sparse and noisy data. In: Proceedings of the 21st ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, pp 444–447

  • Wessel N, Widener MJ (2017) Discovering the space-time dimensions of schedule padding and delay from GTFS and real-time transit data. J Geogr Syst 19(1):93–107

    Article  Google Scholar 

  • Xu J, Güting RH (2013) A generic data model for moving objects. GeoInformatica 17(1):125–172

    Article  Google Scholar 

  • Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2013) Semantic trajectories: mobility data computation and annotation. ACM Trans Intell Syst Technol 4(3):49:1-49:38

    Article  Google Scholar 

  • Zimányi E, Sakr MA, Lesuisse A (2020) MobilityDB: a mobility database based on PostgreSQL and PostGIS. ACM Trans Database Syst 45(4):19:1-19:42

    Article  Google Scholar 

Download references

Acknowledgements

Alejandro Vaisman was partially supported by Project PICT 2017-1054, from the Argentinian Scientific Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Vaisman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godfrid, J., Radnic, P., Vaisman, A. et al. Analyzing public transport in the city of Buenos Aires with MobilityDB. Public Transp 14, 287–321 (2022). https://doi.org/10.1007/s12469-022-00290-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12469-022-00290-8

Keywords