Abstract
In the energy industry, Internet of Things technologies emerge in the form of smart energy products, like smart meters, which are expected to reveal new business potentials and offer value for customers. Through attractive business models, such technologies can generate economic value. However, until now, the existing research has not comprehensively identified, analyzed, and grouped together smart energy business models. Moreover, the literature has not placed smart energy business models under the concept of smart products and services. To address this gap, we review the literature through an information systems lens and assess the status quo of research on smart energy business models, identify relevant business model types, and propose a research agenda for future research on Internet of Things-based business models in the energy sector.






Similar content being viewed by others
References
Al-Debei, M. M., & Avison, D. (2010). Developing a unified framework of the business model concept. European Journal of Information Systems, 19(3), 359–376.
Allmendinger, G., & Lombreglia, R. (2005). Four strategies for the age of smart services. Harvard Business Review, 83(10), 131–145.
Alshahrani, S., Khalid, M., & Almuhaini, M. (2019). Electric vehicles beyond energy storage and modern power networks: Challenges and applications. IEEE Access, 7, 99031–99064.
Alvarez, O., Ghanbari, A., & Markendahl, J. (2015). Smart energy: Competitive landscape and collaborative business models. In Proceedings of the 18th International Conference on Intelligence in Next Generation Networks (ICIN 2015) (pp. 114–120). Paris, France.
Andersen, P. H., Mathews, J. A., & Rask, M. (2009). Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles. Energy Policy, 37(7), 2481–2486.
Bache, V., Capito, R., Hasenkamp, C., & Koenig, C. (2010). “DC for AC” … no hard-rock band, but a new and unregulated business model for electricity retail markets. Competition and Regulation in Network Industries, 11(3), 246–263.
Baden-Fuller, C., & Haefliger, S. (2013). Business models and technological innovation. Long Range Planning, 46(6), 419–426.
Bae, M., Kim, H., Kim, E., Chung, A. Y., Kim, H., & Roh, J. H. (2014). Toward electricity retail competition: Survey and case study on technical infrastructure for advanced electricity market system. Applied Energy, 133, 252–273.
Beckel, C., Sadamori, L., Staake, T., & Santini, S. (2014). Revealing household characteristics from smart meter data. Energy, 78, 397–410.
Behrangrad, M. (2015). A review of demand side management business models in the electricity market. Renewable and Sustainable Energy Reviews, 47, 270–283.
Beverungen, D., Müller, O., Matzner, M., Mendling, J., & vom Brocke, J. (2019). Conceptualizing smart service systems. Electronic Markets, 29(1), 7–18.
Bhatti, H. J., & Danilovic, M. (2018). Business model innovation approach for commercializing smart grid systems. American Journal of Industrial and Business Management, 8(9), 2007–2051.
Bischoff, D., Kinitzki, M., Wilke, T., Zeqiraj, F., Zivkovic, S., Koppenhöfer, C., et al. (2017). Smart meter based business models for the electricity sector – a systematical literature research. In Proceedings of the 3rd Digital Enterprise Computing Conference (DEC 2017) (pp. 79–90). Böblingen, Germany.
Brandt, T., Wagner, S., & Neumann, D. (2012). Road to 2020: IS-supported business models for electric mobility and electrical energy markets. In Proceedings of the 33rd conference on Information Systems (ICIS 2012) (pp. 3758–3767). Orlando, USA.
Brunekreeft, G., Buchmann, M., Dänekas, C., Guo, X., Mayer, C., Merkel, M., et al. (2015). Germany’s way from conventional power grids towards smart grids. In Regulatory pathways for smart grid development in China (pp. 45–78). Wiesbaden: Springer Fachmedien Wiesbaden.
Bryant, S. T., Straker, K., & Wrigley, C. (2018). The typologies of power: Energy utility business models in an increasingly renewable sector. Journal of Cleaner Production, 195, 1032–1046.
Budde Christensen, T., Wells, P., & Cipcigan, L. (2012). Can innovative business models overcome resistance to electric vehicles? Better place and battery electric cars in Denmark. Energy Policy, 48, 498–505.
Burger, S. P., & Luke, M. (2017). Business models for distributed energy resources: A review and empirical analysis. Energy Policy, 109, 230–248.
Chesbrough, H., & Rosenbloom, R. S. (2002). The role of the business model in capturing value from innovation: Evidence from Xerox Corporation’s technology spin-off companies. Industrial and Corporate Change, 11(3), 529–555.
Christensen, C. M., & Bower, J. L. (1996). Customer power, strategic investment, and the failure of leading firms. Strategic Management Journal, 17(17), 197–218.
Curtius, H. C., Künzel, K., & Loock, M. (2012). Generic customer segments and business models for smart grids. Der Markt, 51(2–3), 63–74.
Dave, S., Sooriyabandara, M., & Yearworth, M. (2013). System behaviour modelling for demand response provision in a smart grid. Energy Policy, 61, 172–181.
De Reuver, M., & Haaker, T. (2007). Business model dynamics: A longitudinal, cross-sectional case survey. In Proceedings of the 20th Bled Electronic Commerce Conference (Bled 2007) (pp. 429–442). Bled, Slovenia.
Dijkman, R. M., Sprenkels, B., Peeters, T., & Janssen, A. (2015). Business models for the internet of things. International Journal of Information Management, 35(6), 672–678.
Engelken, M., Römer, B., Drescher, M., Welpe, I. M., & Picot, A. (2016). Comparing drivers, barriers, and opportunities of business models for renewable energies: A review. Renewable and Sustainable Energy Reviews, 60, 795–809.
Fang, C., Fan, B., Sun, T., Feng, D., & Chen, J. (2017). Business models for demand response aggregators under regulated power markets. CIRED – Open Access Proceedings Journal, 2017(1), 1614–1617.
Farhangi, H. (2010). The path of the smart grid. IEEE Power and Energy Magazine, 8(1), 18–28.
Fichman, R., Dossantos, B., & Jindal, N. (2014). Digital innovation as fundamental and powerful concept in the information systems curriculum. MIS Quarterly, 38(2), 329–353.
Fleisch, E., Weinberger, M., & Wortmann, F. (2014). Geschäftsmodelle im Internet der Dinge. HMD Praxis der Wirtschaftsinformatik, 51, 812–826.
Fox-Penner, P. (2009). Fix utilities before they need a rescue. Harvard Business Review, 87(10), 132–132.
Fritz, T., Mohr, M., & Staeglich, J. (2017). Digital electricity – German utilities need to digitize – Or risk disruption. Energy Journal, 3, 2–5.
Geelen, D., Reinders, A., & Keyson, D. (2013). Empowering the end-user in smart grids: Recommendations for the design of products and services. Energy Policy, 61, 151–161.
Georgakopoulos, D., & Jayaraman, P. P. (2016). Internet of things: From internet scale sensing to smart services. Computing, 98(10), 1041–1058.
Giordano, V., & Fulli, G. (2012). A business case for smart grid technologies: A systemic perspective. Energy Policy, 40(1), 252–259.
Goebel, C. (2013). On the business value of ICT-controlled plug-in electric vehicle charging in California. Energy Policy, 53, 1–10.
Goebel, C., Jacobsen, H.-A., del Razo, V., Doblander, C., Rivera, J., Ilg, J., et al. (2014). Energy informatics. Business & Information Systems Engineering, 6(1), 25–31.
Goldbach, K., Rotaru, A. M., Reichert, S., Stiff, G., & Gölz, S. (2018). Which digital energy services improve energy efficiency? A multi-criteria investigation with European experts. Energy Policy, 115, 239–248.
Grosse, M., Send, H., & Schildhauer, T. (2019). Lessons learned from establishing the energy-informatics business model: Case of a German energy company. Sustainability, 11(3), 857–875.
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Future generation computer systems internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.
Hall, S., & Roelich, K. (2016). Business model innovation in electricity supply markets: The role of complex value in the United Kingdom. Energy Policy, 92, 286–298.
Hamelink, M., & Opdenakker, R. (2019). How business model innovation affects firm performance in the energy storage market. Renewable Energy, 120–127.
Hamwi, M., & Lizarralde, I. (2017). A review of business models towards service-oriented electricity systems. In Procedia CIRP (Vol. 64, pp. 109–114). Copenhagen, Denmark.
Hatzl, S., Seebauer, S., Fleiß, E., & Posch, A. (2016). Market-based vs. grassroots citizen participation initiatives in photovoltaics: A qualitative comparison of niche development. Futures, 78–79, 57–70.
He, X., Delarue, E., D’haeseleer, W., & Glachant, J. M. (2011). A novel business model for aggregating the values of electricity storage. Energy Policy, 39(3), 1575–1585.
Helms, T., Loock, M., & Bohnsack, R. (2016). Timing-based business models for flexibility creation in the electric power sector. Energy Policy, 92, 348–358.
Hilger, L., Schneiders, T., Meyer, F. P., & Kroll, J.-P. (2018). Use of smart technologies for energy efficiency, energy-and load management in small and medium sized enterprises (SMEs). In Proceedings of the 7th International Energy and Sustainability Conference (IESC) (pp. 1–8). Cologne, Germany.
Hyytinen, K., & Toivonen, M. (2015). Future energy services: Empowering local communities and citizens. Foresight, 17(4), 349–364.
IEA. (2019). Smart grids – Tracking clean energy progress. https://www.iea.org/tcep/energyintegration/smartgrids/. Accessed 3 Sept 2019.
Jiao, N., & Evans, S. (2016). Business models for sustainability: The case of second-life electric vehicle batteries. In Procedia CIRP (Vol. 40, pp. 250–255). Binh Du’o’ng New City, Vietnam.
Johnson, M. W., Christensen, C. M., & Kagermann, H. (2008). Reinventing your business model. Harvard Business Review, 86(12), 57–68.
Kahlen, M., Ketter, W., & van Dalen, J. (2014). Balancing with electric vehicles: A profitable business model. In Proceedings of the 22nd European conference on information systems (ECIS 2014). Tel Aviv, Israel.
Kalathil, D., Wu, C., Poolla, K., & Varaiya, P. (2019). The sharing economy for the electricity storage. IEEE Transactions on Smart Grid, 10(1), 556–567.
Khan, S., Shariff, S., Ahmad, A., & Saad Alam, M. (2018). A comprehensive review on level 2 charging system for electric vehicles. Smart Science, 6(3), 271–293.
Khripko, D., Morioka, S. N., Evans, S., Hesselbach, J., & de Carvalho, M. M. (2017). Demand side management within industry: A case study for sustainable business models. In Procedia manufacturing (Vol. 8, pp. 270–277). Stellenbosch, South Africa.
Kim, Y. M., Jung, D., Chang, Y., & Choi, D. H. (2019). Intelligent micro energy grid in 5G era: Platforms, business cases, testbeds, and next generation applications. Electronics, 8(4), 468.
Kley, F., Lerch, C., & Dallinger, D. (2011). New business models for electric cars-A holistic approach. Energy Policy, 39(6), 3392–3403.
Koirala, B. P., Koliou, E., Friege, J., Hakvoort, R. A., & Herder, P. M. (2016). Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems. Renewable and Sustainable Energy Reviews, 56, 722–744.
Koirala, B. P., van Oost, E., & van der Windt, H. (2018). Community energy storage: A responsible innovation towards a sustainable energy system? Applied Energy, 231(June), 570–585.
Kranz, J., Kolbe, L. M., Koo, C., & Boudreau, M. C. (2015). Smart energy: Where do we stand and where should we go? Electronic Markets, 25(1), 7–16.
Kuller, P., Dorsch, N., & Korsakas, A. (2015). Energy co-operatives business models: Intermediate result from eight case studies in southern Germany. In Proceedings of the 5th International Youth Conference on Energy (IYCE 2015). Pisa, Italy.
Lambert, S. C. (2015). The importance of classification to business model research. Journal of Business Models, 3(1), 49–61.
Lasseter, R. H. (2002). MicroGrids. In Proceedings of the IEEE power engineering society winter meeting conference. New York, USA.
Laurischkat, K., Viertelhausen, A., & Jandt, D. (2016). Business models for electric mobility. In Procedia CIRP (Vol. 47, pp. 483–488). Bergamo, Italy.
Lezama, F., Soares, J., Faia, R., Vale, Z., Macedo, L. H., & Romero, R. (2019). Business models for flexibility of electric vehicles. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2019) (pp. 1873–1878). Prague, Czech Republic.
Liu, J., Zhang, N., Kang, C., Kirschen, D., & Xia, Q. (2017). Cloud energy storage for residential and small commercial consumers: A business case study. Applied Energy, 188, 226–236.
Löbbe, S., & Hackbarth, A. (2017). The transformation of the German electricity sector and the emergence of new business models in distributed energy systems. In Innovation and disruption at the grid’s edge (pp. 287–318). Elsevier.
Lund, H., Andersen, A. N., Østergaard, P. A., Mathiesen, B. V., & Connolly, D. (2012). From electricity smart grids to smart energy systems – A market operation based approach and understanding. Energy, 42(1), 96–102.
Lynch, P., Power, J., Hickey, R., & Messervey, T. (2017). Business model strategies: Flexibility trade in emerging low voltage distribution networks. Entrepreneurship and Sustainability Issues, 4(3), 380–391.
Makris, P., Efthymiopoulos, N., Nikolopoulos, V., Pomazanskyi, A., Irmscher, B., Stefanov, K., et al. (2018). Digitization era for electric utilities: A novel business model through an inter-disciplinary s/w platform and open research challenges. IEEE Access, 6, 22452–22463.
Martin-Martínez, F., Sánchez-Miralles, A., & Rivier, M. (2016). A literature review of Microgrids: A functional layer based classification. Renewable and Sustainable Energy Reviews, 62, 1133–1153.
Massey, B., Verma, P., & Khadem, S. (2018). Citizen engagement as a business model for smart energy communities. In Proceedings of the 5th international symposium on Environment-Friendly Energies and Applications (EFEA 2018). Rome, Italy.
Matusiak, B. E. B. E., Melo, F., Piotrowski, K., & Melo, F. (2015). Energy management using the business model approach. In Proceedings of the 12th international conference on the European Energy Market (EEM 2015). Lisbon, Portugal.
Mayring, P. (2010). Qualitative Inhaltsanalyse. In G. Mey & K. Mruck (Eds.), Handbuch qualitative Forschung in der Psychologie (pp. 601–613). Wiesbaden: VS Verlag für Sozialwissenschaften.
Morris, M., Schindehutte, M., & Allen, J. (2005). The entrepreneur’s business model: Toward a unified perspective. Journal of Business Research, 58(6), 726–735.
Niesten, E., & Alkemade, F. (2016). How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects. Renewable and Sustainable Energy Reviews, 53, 629–638.
NIST. (2014, October). NIST framework and roadmap for smart grid interoperability standards, release 3.0. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1108r3.pdf. Accessed 15 Apr 2018.
Oren, S. S. (2013). A historical perspective and business model for load response aggregation based on priority service. In Proceedings of the 46th Hawaii International Conference on System Sciences (HICSS 2013) (pp. 2206–2214). Wailea, USA.
Osterwalder, A. (2004). The business model ontology – a proposition in a design science approach. Doctoral dissertation, University of Lausanne.
Osterwalder, A., & Pigneur, Y. (2002). An E-business model ontology for modeling E-business. In Proceedings of the 15th Bled Electronic Commerce Conference (Bled 2002) (pp. 75–91). Bled, Slovenia.
Osterwalder, A., & Pigneur, Y. (2010). Business model generation: A handbook for visionaries, game changers, and challengers. Hoboken: Wiley.
Paukstadt, U. (2019). A survey of smart energy services for private households. In Proceedings of the 14th international conference on Wirtschaftsinformatik (WI 2019). Siegen, Germany.
Paukstadt, U., Gollhardt, T., Blarr, M., Chasin, F., & Becker, J. (2019). A consumer-oriented smart energy business model taxonomy. In Proceedings of the 27th European Conference on Information Systems (ECIS 2019). Stockholm and Uppsala, Sweden.
Pereira, G. I., Specht, J. M., Silva, P. P., & Madlener, R. (2018). Technology, business model, and market design adaptation toward smart electricity distribution: Insights for policy making. Energy Policy, 121, 426–440.
Peters, C., Blohm, I., & Leimeister, J. M. (2015). Anatomy of successful business models for complex services: Insights from the telemedicine field. Journal of Management Information Systems, 32(3), 75–104.
Porter, M. E., & Heppelmann, J. E. (2014). How smart, connected products are transforming competition. Harvard Business Review, 92(11), 64–88.
Pousttchi, K., & Hufenbach, Y. (2011). Value creation in the mobile market: A reference model for the role(s) of the future mobile network operator. Business and Information Systems Engineering, 3(5), 299–311.
Pouttu, A., Haapola, J., Ahokangas, P., Xu, Y., Kopsakangas-Savolainen, M., Porras, E., et al. (2017). P2P model for distributed energy trading, grid control and ICT for local smart grids. In Procceedings of the 26th European Conference on Networks and Communications (EuCNC 2017). Oulu, Finland.
Riasanow, T., Galic, G., & Böhm, M. (2017). Digital transformation in the automative industry: Towards a generic value network. In Proceedings of the 25th European Conference on Information Systems (ECIS 2017). Guimarães, Portugal.
Richter. (2012). Utilities’ business models for renewable energy: A review. Renewable and Sustainable Energy Reviews, 16(5), 2483–2493.
Richter, L.-L., & Pollitt, M. G. (2018). Which smart electricity service contracts will consumers accept? The demand for compensation in a platform market. Energy Economics, 72, 436–450.
Rodríguez-Molina, J., Martínez-Núñez, M., Martínez, J. F., & Pérez-Aguiar, W. (2014). Business models in the smart grid: Challenges, opportunities and proposals for prosumer profitability. Energies, 7(9), 6142–6171.
Rodríguez-Molina, J., Martínez, J.-F., & Castillejo, P. (2016). A study on applicability of distributed energy generation, storage and consumption within small scale facilities. Energies, 9(9), 745.
Ropuszyńska-Surma, E., & Węglarz, M. (2019). The virtual power plant – A review of business models. In E3S web of conferences (Vol. 108, p. 01006). Krakow, Poland.
Roscher, M., Fluhr, J., & Lutz, T. (2013). Optimized integration of electric vehicles with Lithium Iron phosphate batteries into the regulation service market of smart grids – enhanced vehicle-to-grid business model. In Proceedings of the 2nd international conference on Smart Grids and Green IT Systems (SMARTGREEENS 2013) (pp. 88–92). Aachen, Germany.
Salah, F., Flath, C. M., Schuller, A., Will, C., & Weinhardt, C. (2017). Morphological analysis of energy services: Paving the way to quality differentiation in the power sector. Energy Policy, 106, 614–624.
San Román, T. G., Momber, I., Abbad, M. R., & Sánchez Miralles, Á. (2011). Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships. Energy Policy, 39(10), 6360–6375.
Sánchez-Miralles, A., Gomez, S. R., Fernandez, I. J., & Calvillo, C. F. (2014). Towards the effective integration of electric vehicles in the grid. IEEE Intelligent Transportation Systems Magazine, 6(4), 45–56.
Sepponen, M., & Heimonen, I. (2016). Business concepts for districts’ energy hub systems with maximised share of renewable energy. Energy and Buildings, 124, 273–280.
Shafer, S. M., Smith, H. J., Linder, J. C., Scott, B., Shafer, M., Smith, H. J., & Linder, J. C. (2005). The power of business models. Business Horizons, 48(3), 199–207.
Shomali, A., & Pinkse, J. (2016). The consequences of smart grids for the business model of electricity firms. Journal of Cleaner Production, 112, 3830–3841.
Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in industry 4.0: A review of the concept and of energy management approached in production based on the internet of things paradigm. In Proceedings of the 21st IEEE International Conference on Industrial Engineering and Engineering Management (IEEM 2014) (pp. 697–701). Bandar Sunway, Malaysia.
Sisinni, M., Noris, F., Smit, S., Messervey, T., Crosbie, T., Breukers, S., & van Summeren, L. (2017). Identification of value proposition and development of innovative business models for demand response products and services enabled by the DR-BOB solution. Buildings, 7(4), 93.
Steriotis, K., Tsaousoglou, G., Efthymiopoulos, N., Makris, P., & Varvarigos, E. (Manos). (2018). A novel behavioral real time pricing scheme for the active energy consumers’ participation in emerging flexibility markets. Sustainable Energy, Grids and Networks, 16, 14–27.
Strüker, J., Weppner, H., & Bieser, G. (2011). Intermediaries for the internet of energy – Exchanging smart meter data as a business model. In Proceedings of the 19th European Conference on Information Systems (ECIS 2011). Helsinki, Finland.
Teece, D. J. (2010). Business models, business strategy and innovation. Long Range Planning, 43(2–3), 172–194.
Turber, S., Vom Brocke, J., Gassmann, O., & Fleisch, E. (2014). Designing business models in the era of internet of things. In Proceedings of the 9th international conference on Design Science Research in Information Systems (DESRIST 2014) (pp. 17–31). Miami, USA.
US. Department of Energy. (2006). Benefits of demand response in electricity markets and recommendations for achieving them: a report to the United States congress pursuant to section 1252 of the Energy Policy Act of 2005. https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/DOE_Benefits_of_Demand_Response_in_Electricity_Markets_and_Recommendations_for_Achieving_Them_Report_to_Congress.pdf. Accessed 26 Apr 2018.
Valocchi, M., Juliano, J., & Schurr, A. (2014). Switching perspectives: Creating new business models for a changing world of energy. In D. Mah, P. Hills, V. O. K. Li, & R. Balme (Eds.), Smart grid applications and developments (pp. 165–184). London: Springer.
Valtanen, K., Backman, J., & Yrjola, S. (2019). Blockchain-powered value creation in the 5G and smart grid use cases. IEEE Access, 7, 25690–25707.
Van Dam, S. S., Bakker, C. A., & Van Hal, J. D. M. (2010). Home energy monitors: Impact over the medium-term. Building Research and Information, 38(5), 458–469.
Vasirani, M., & Ossowski, S. (2013). Smart consumer load balancing: State of the art and an empirical evaluation in the Spanish electricity market. Artificial Intelligence Review, 39(1), 81–95.
Vom Brocke, J., Simons, A., Niehaves, B., Niehaves, B., Reimer, K., Plattfaut, R., & Cleven, A. (2009). Reconstructing the Giant: On the importance of rigour in documenting the literature search process. In Proceedings of the 17th European Conference on Information Systems (ECIS 2009) (pp. 2206–2217). Verona, Italy.
Wagner, S., Brandt, T., & Neumann, D. (2013). Beyond mobility – An energy informatics business model for vehicles in the electric age. In Proceedings of the 21st European Conference on Information Systems (ECIS 2013). Utrecht, Netherlands.
Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS Quarterly, 26(2), xiii–xxiii.
Weiller, C., & Neely, A. (2014). Using electric vehicles for energy services: Industry perspectives. Energy, 77, 194–200.
Wilde, T., & Hess, T. (2007). Forschungsmethoden der Wirtschaftsinformatik. Eine empirische Untersuchung. Wirtschaftsinformatik, 49(4), 280–287.
Wolsink, M. (2012). The research agenda on social acceptance of distributed generation in smart grids: Renewable as common pool resources. Renewable and Sustainable Energy Reviews, 16(1), 822–835.
Wunderlich, P., Kranz, J., Totzek, D., Veit, D., & Picot, A. (2012). The impact of endogenous motivations on adoption of IT-enabled services: The case of transformative services in the energy sector. Journal of Service Research, 16(3), 356–371.
Wünderlich, N. V., Heinonen, K., Ostrom, A. L., Patricio, L., Sousa, R., Voss, C., & Lemmink, J. G. (2015). “Futurizing” smart service: Implications for service researchers and managers. Journal of Services Marketing, 29(6/7), 442–447.
Xu, Y., Ahokangas, P., & Reuter, E. (2018a). EAAS: Electricity as a service? Journal of Business Models, 6(3), 1–23.
Xu, Y., Ahokangas, P., Yrjölä, S., & Koivumäki, T. (2018b). The blockchain marketplace as the fifth type of electricity market. In Proceedings of the 2nd international conference on Smart Grid Inspired Future Technologies (SmartGIFT 2018) (pp. 278–288). Auckland, New Zealand.
Xu, Y., Ahokangas, P., Yrjölä, S., & Koivumäki, T. (2019). The fifth archetype of electricity market: The blockchain marketplace. Wireless Networks, 1–17.
Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010). The new organizing logic of digital innovation: An agenda for information systems research. Information Systems Research, 21(4), 724–735.
Zaidi, B. H., Bhatti, D. M. S., & Ullah, I. (2018). Combinatorial auctions for energy storage sharing amongst the households. Journal of Energy Storage, 19, 291–301.
Zhou, Y., Wu, J., & Long, C. (2018). Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework. Applied Energy, 222, 993–1022.
Zott, C., Amit, R., & Massa, L. (2011). The business model: Recent developments and future research. Journal of Management, 37(4), 1019–1042.
Acknowledgements
This paper has been written in context of the research project “VISE: Virtuelles Institut Smart Energy”(https://www.smart-energy.nrw/). The project is funded by the “European Regional Development Fund (ERDF) 2014-2020”. We would like to thank the editor and anonymous reviewers for their insightful comments that helped to advance this paper throughout the review process.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible Editor: Yun Wan
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Internet of Things for Electronic Markets
Rights and permissions
About this article
Cite this article
Paukstadt, U., Becker, J. Uncovering the business value of the internet of things in the energy domain – a review of smart energy business models. Electron Markets 31, 51–66 (2021). https://doi.org/10.1007/s12525-019-00381-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12525-019-00381-8
Keywords
- Smart energy
- Smart grid
- Smart energy business models
- Smart grid business models
- Internet of things business models