Abstract
Facilitated by AI technology, the phenomenon of cognitive automation extends the scope of deterministic business process automation (BPA) through the probabilistic automation of knowledge and service work. By transforming work systems through cognitive automation, organizations are provided with vast strategic opportunities to gain business value. However, research lacks a unified conceptual lens on cognitive automation, which hinders scientific progress. Thus, based on a Systematic Literature Review, we describe the fundamentals of cognitive automation and provide an integrated conceptualization. We provide an overview of the major BPA approaches such as workflow management, robotic process automation, and Machine Learning-facilitated BPA while emphasizing their complementary relationships. Furthermore, we show how the phenomenon of cognitive automation can be instantiated by Machine Learning-facilitated BPA systems that operate along the spectrum of lightweight and heavyweight IT implementations in larger IS ecosystems. Based on this, we describe the relevance and opportunities of cognitive automation in Information Systems research.

References
Abdel-Karim, B. M., Pfeuffer, N., & Hinz, O. (2021). Machine learning in information systems - a bibliographic review and open research issues. Electronic Markets, 31(3). https://doi.org/10.1007/s12525-021-00459-2.
Alt, R., & Klein, S. (2011). Twenty years of electronic markets research—looking backwards towards the future. Electronic Markets, 21(1), 41–51. https://doi.org/10.1007/s12525-011-0057-z
Asatiani, A., & Penttinen, E. (2016). Turning robotic process automation into commercial success - Case OpusCapita. Journal of Information Technology Teaching Cases, 6(2), 67–74. https://doi.org/10.1057/jittc.2016.5
Benlian, A., Kettinger, W. J., Sunyaev, A., & Winkler, T. J. (2018). Special Section: The Transformative Value of Cloud Computing: A Decoupling, Platformization, and Recombination Theoretical Framework. Journal of Management Information Systems, 35(3), 719–739. https://doi.org/10.1080/07421222.2018.1481634
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
Bruckner, D., Zeilinger, H., & Dietrich, D. (2012). Cognitive Automation—Survey of Novel Artificial General Intelligence Methods for the Automation of Human Technical Environments. IEEE Transactions on Industrial Informatics, 8(2), 206–215. https://doi.org/10.1109/TII.2011.2176741
Butner, K., & Ho, G. (2019). How the human-machine interchange will transform business operations. Strategy and Leadership, 47(2), 25–33. https://doi.org/10.1108/SL-01-2019-0003
Bygstad, B. (2017). Generative innovation: A comparison of lightweight and heavyweight IT. Journal of Information Technology, 32(2), 180–193. https://doi.org/10.1057/jit.2016.15
Card, D., & Nelson, C. (2019). How automation and digital disruption are shaping the workforce of the future. Strategic HR Review, 18(6), 242–245. https://doi.org/10.1108/shr-08-2019-0067
Coombs, C., Hislop, D., Taneva, S. K., & Barnard, S. (2020). The strategic impacts of Intelligent Automation for knowledge and service work: An interdisciplinary review. Journal of Strategic Information Systems, 29(4), 1–30. https://doi.org/10.1016/j.jsis.2020.101600
Davenport, T. H., & Kirby, J. (2016). Only humans need apply: winners and losers in the age of smart machines. Harvard Business School. Harper Business New York, NY.
Dellermann, D., Ebel, P., Söllner, M., & Leimeister, J. M. (2019). Hybrid Intelligence. Business and Information Systems Engineering, 61(5), 637–643. https://doi.org/10.1007/s12599-019-00595-2
Drucker, P. F. (1993). Concept of the Corporation. Transaction Publishers.
Engel, C., Ebel, P., & van Giffen, B. (2021a). Empirically exploring the cause-effect relationships of ai characteristics, project management challenges, and organizational change. 16th International Conference on Wirtschaftsinformatik (pp. 1–17). Essen, Germany.
Engel, C., Elshan, E., & Ebel, P. (2021b). Deploying a model for assessing cognitive automation use cases: Insights from action research with a leading european manufacturing company. Proceedings of the 54th Hawaii International Conference on System Sciences (pp. 6253–6262).
Fasth-Berglund, Å., & Stahre, J. (2013). Cognitive automation strategy for reconfigurable and sustainable assembly systems. Assembly Automation, 33(3), 294–303. https://doi.org/10.1108/AA-12-2013-036
Gershenson, C. (2003). On the notion of cognition. ArXiv Preprint Cs/0303006.
Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459. https://doi.org/10.1038/nature14541
Gubrud, M. A. (1997). Nanotechnology and international security. Fifth Foresight Conference on Molecular Nanotechnology (Vol. 1).
Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5–14. https://doi.org/10.1177/0008125619864925
Herm, L. V., Janiesch, C., Reijers, H. A., & Seubert, F. (2021). From Symbolic RPA to Intelligent RPA: Challenges for Developing and Operating Intelligent Robots. In A. Polyvyanyy, M. T. Wynn, A. Van Looy, & M. Reichert (Eds.) (pp. 289–305). Cham: Springer International Publishing.
Hofmann, P., Jöhnk, J., Protschky, D., & Urbach, N. (2020a). Developing purposeful ai use cases - A structured method and its application in project management. Proceedings of the 15th International Conference on Wirtschaftsinformatik. Potsdam, Germany. https://doi.org/10.30844/wi_2020_a3
Hofmann, P., Samp, C., & Urbach, N. (2020b). Robotic process automation. Electronic Markets, 30(1), 99–106. https://doi.org/10.1007/s12525-019-00365-8
Janiesch, C., Fischer, M., Winkelmann, A., & Nentwich, V. (2019). Specifying autonomy in the Internet of Things: The autonomy model and notation. Information Systems and E-Business Management, 17(1), 159–194. https://doi.org/10.1007/s10257-018-0379-x
Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685–695. https://doi.org/10.1007/s12525-021-00475-2.
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
Kahneman, D. (2015). Thinking, Fast and Slow. College Music Symposium (Vol. 55). London: Macmillan. https://doi.org/10.18177/sym.2015.55.ca.10990
König, M., Bein, L., Nikaj, A., & Weske, M. (2020). Integrating Robotic Process Automation into Business Process Management. In A. Asatiani, J. M. García, N. Helander, A. Jiménez-Ramírez, A. Koschmider, J. Mendling, Mendling, J., Meroni, G. & H. A. Reijers (Eds.), Lecture Notes in Business Information Processing (Vol. 393 LNBIP, pp. 132–146). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-58779-6_9
Kroll, C., Bujak, A., Darius, V., Enders, W., & Esser, M. (2016). Robotic Process Automation - Robots conquer business processes in back offices. Capgemini Consulting, 1–48. Retrieved from https://www.capgemini.com/consulting-de/wp-content/uploads/sites/32/2017/08/robotic-process- automation-study.pdf
Lacity, M., & Willcocks, L. (2018a). Client Service Automation Deployments - What Do They Mean for Your Job and Organization? Pulse Magazine.
Lacity, M., & Willcocks, L. (2018b). Robotic process and cognitive automation: the next phase. Information and Organization. Ashford, UK: SB Publishing.
Lacity, M., & Willcocks, L. (2021). Becoming Strategic with Intelligent Automation. MIS Quarterly Executive, 20(2), 1–14. Retrieved from https://standards.ieee.org/
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Lins, S., Pandl, K. D., Teigeler, H., Thiebes, S., Bayer, C., & Sunyaev, A. (2021). Artificial Intelligence as a Service. Business & Information Systems Engineering, 63(4), 441–456. https://doi.org/10.1007/s12599-021-00708-w
Markus, M. L. (2004). Technochange management: Using IT to drive organizational change. Journal of Information Technology, 19(1), 4–20. https://doi.org/10.1057/palgrave.jit.2000002
Neisser, U. (2014). Cognitive psychology: Classic edition. Cognitive Psychology: Classic Edition. Psychology Press. https://doi.org/10.4324/9781315736174
Nobre, F. S., Tobias, A. M., & Walker, D. S. (2009). The impact of cognitive machines on complex decisions and organizational change. AI and Society, 24(4), 365–381. https://doi.org/10.1007/s00146-009-0207-4
Ogiela, L., & Ogiela, M. R. (2014). Cognitive systems for intelligent business information management in cognitive economy. International Journal of Information Management, 34(6), 751–760. https://doi.org/10.1016/j.ijinfomgt.2014.08.001
Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse, disuse, abuse. Human Factors, 39(2), 230–253. https://doi.org/10.1518/001872097778543886
Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model for types and levels of human interaction with automation. IEEE Transactions on Systems, Man, and Cybernetics Part a: Systems and Humans., 30(3), 286–297. https://doi.org/10.1109/3468.844354
Park, S.-C. (2018). The Fourth Industrial Revolution and implications for innovative cluster policies. AI & Society, 33(3), 433–445.
Poosapati, V., Manda, V. K., & Katneni, V. (2018). Cognitive Automation Opportunities, Challenges and Applications. Journal of Computer Engineering and Technology, 9(5), 89–95.
Pramod, A., Naicker, H. S., & Tyagi, A. K. (2021). Machine Learning and Deep Learning: Open Issues and Future Research Directions for the Next 10 Years. In Computational Analysis and Deep Learning for Medical Care (pp. 463–490). Wiley. https://doi.org/10.1002/9781119785750.ch18
Rai, A., Constantinides, P., & Sarker, S. (2019). Editor’s Comments: Next-Generation Digital Platforms: Toward Human-AI Hybrids. Management Information Systems Quarterly, 43(1), iii–ix.
Rainey, S. K., Brown, B., & Kirk, D. B. (2017). Bots, natural language processing, and machine learning. Tax Executive, 69, 39–46. HeinOnline, https://heinonline.org/HOL/P?h=hein.journals/taxexe69&i=357.
Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A modern approach (Fourth edi). Pearson.
Sampson, S. E. (2021). A Strategic Framework for Task Automation in Professional Services. Journal of Serviec Research, 24(1), 122–140. https://doi.org/10.1177/1094670520940407
Selz, D. (2020). From electronic markets to data driven insights. Electronic Markets, 30(1), 57–59. https://doi.org/10.1007/s12525-019-00393-4
Stohr, A., & O’Rourke, J. (2021). Through the cognitive functions lens-a socio-technical analysis of predictive maintenance. 16th International Conference on Wirtschaftsinformatik (pp. 1–16). Essen, Germany.
Syed, R., Suriadi, S., Adams, M., Bandara, W., Leemans, S. J. J., Ouyang, C., Hofstede, A. H. M. ter, van de Weerd, I., Wynn, M. T. & Reijers, H. A. (2020). Robotic process automation: Contemporary themes and challenges. Computers in Industry, 115, 1–15. https://doi.org/10.1016/j.compind.2019.103162.
Ter Hofstede, A. H. M., Van Der Aalst, W. M. P., Adams, M., & Russell, N. (2010). Modern business process automation: YAWL and its support environment. Modern Business Process Automation: YAWL and its Support Environment. Springer Science & Business Media. https://doi.org/10.1007/978-3-642-03121-2
van der Aalst, W. M. P., Bichler, M., & Heinzl, A. (2018). Robotic Process Automation. Business & Information Systems Engineering, 60(4), 269–272. https://doi.org/10.1007/s12599-018-0542-4
Van Der Aalst, W., Van Hee, K. M., & van Hee, K. (2004). Workflow management: models, methods, and systems. MIT press.
vom Brocke, J., Simons, A., Riemer, K., Niehaves, B., Plattfaut, R., & Cleven, A. (2015). Standing on the shoulders of giants: Challenges and recommendations of literature search in information systems research. Communications of the Association for Information Systems, 37(9), 205–224. https://doi.org/10.17705/1cais.03709
von Krogh, G. (2018). Artificial Intelligence in Organizations: New Opportunities for Phenomenon-Based Theorizing. Academy of Management Discoveries, 4(4), 404–409. https://doi.org/10.5465/amd.2018.0084
Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Quarterly, 26(2), xiii–xxiii. 10.1.1.104.6570
Wilamowski, B. M., & Irwin, J. D. (2018). Intelligent systems. CRC Press.
Winfield, A. (2020). Intelligence is not one thing. Journal of Artificial General Intelligence, 11(2), 97–100. https://doi.org/10.2478/jagi-2020-0003
Zarkadakis, G., Jesuthasan, R., & Malcolm, T. (2016). The 3 Ways Work Can Be Automated. Harvard Business Review, (October 13), 1–7. Retrieved from https://hbr.org/2016110/the-3-ways-work-can-be-automated
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible Editor: Rainer Alt
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Engel, C., Ebel, P. & Leimeister, J.M. Cognitive automation. Electron Markets 32, 339–350 (2022). https://doi.org/10.1007/s12525-021-00519-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12525-021-00519-7