Skip to main content

Advertisement

Log in

A fuzzy logic model based Markov random field for medical image segmentation

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

Fuzzy logic incorporates human knowledge into the system via facts and rules and hence widely used in image segmentation. Another successful approach in image segmentation is the use of Markov random field (MRF) to incorporate local spatial information between neighboring pixels of an image. This paper studies the benefits of these two approaches and combines fuzzy logic with MRF to develop a new adaptive fuzzy inference system. The premise part of each fuzzy if–then rule in our approach adopts MRF to utilize the spatial constraint in an image, while the consequent part specifies the pixel distance map. Unlike other fuzzy logic models that require training data that is not always available to train the system before segmenting an image, we propose an unsupervised learning algorithm for automatic image segmentation. To impose the spatial information on the fuzzy if–then rule base, a new clique potential MRF function is proposed in this paper. Our approach is used to segment many medical images from simulated brain images to real brain ones with excellent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T (2002) A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21(3):193–199

    Article  Google Scholar 

  • Azeem MF, Hanmandlu M, Ahmad N (2000) Generalization of adaptive neuro-fuzzy inference systems. IEEE Trans Neural Netw 11(6):1332–1346

    Article  Google Scholar 

  • Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc Ser B 48(3):259–302

    MathSciNet  MATH  Google Scholar 

  • Besag J (1974) Spatial interaction and the statistical analysis of lattice systems (with discussion). J R Stat Soc Ser B 36(2):192–326

    MathSciNet  MATH  Google Scholar 

  • Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum, New York

    Book  MATH  Google Scholar 

  • Blekas K, Likas A, Galatsanos NP, Lagaris IE (2005) A spatially constrained mixture model for image segmentation. IEEE Trans Neural Netw 16(2):494–498

    Article  Google Scholar 

  • Boskovitz V, Guterman H (2002) An adaptive neuro fuzzy system for automatic image segmentation and edge detection. IEEE Trans Fuzzy Syst 10(2):247–262

    Article  Google Scholar 

  • BrainWeb (2012) http://www.bic.mni.mcgill.ca/brainweb

  • Cai W, Chen S, Zhang D (2007) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit 40(3):825–838

    Article  MATH  Google Scholar 

  • Celeux G, Forbes F, Peyrard N (2003) EM procedures using mean field-like approximations for Markov model-based image segmentation. Pattern Recognit 36(1):131–144

    Article  MATH  Google Scholar 

  • Chatzis SP, Varvarigou TA (2008) A fuzzy clustering approach towardhidden Markov random field models for enhanced spatially constrained image segmentation. IEEE Trans Fuzzy Syst 16(5):1351–1361

    Article  Google Scholar 

  • Chen S, Zhang D (2004) Robust image segmentation using FCM with spatial constraints based on new Kernel-induced distance measure. IEEE Trans Syst Man Cybern B 34(4):1907–1916

    Article  Google Scholar 

  • Clifford P (1990) Markov random fields in statistics, disorder in physical systems. a volume in honour of John M. Hammersley on the occasion of his 70th birthday, G. Grimmett and D. Welsh, Oxford, UK, Clarendon

  • Dubois D, Prade H (1993) Fuzzy sets and probability: misunderstandings, bridges, and gaps. IEEE International Conference on Fuzzy Systems, pp 1059–1068

  • Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, Humm JL (1997) Segmentation of lung lesion volume by adaptative positron emission tomography image thresholding. Cancer Biochem Biophys 80(12):2505–2509

    Article  Google Scholar 

  • Forbes F, Peyrard N (2003) Hidden Markov random field model selection criteria based on mean field-like approximations. IEEE Trans Pattern Anal Mach Intell 25(9):1089–1101

    Article  Google Scholar 

  • Gan MT, Hanmandlu M, Tan AH (2005) From a Gaussian mixture model to additive fuzzy systems. IEEE Trans Fuzzy Syst 13(3):303–316

    Article  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell PAMI-6(6):721–741

    Article  Google Scholar 

  • Hassanien A, Abraham A, Peters J, Schaefer G (2009) Rough sets and near sets in medical imaging: a review. IEEE Trans Inf Technol Biomed 13(6):955–968

    Article  Google Scholar 

  • Hata Y, Kobashi S, Hirano S, Kitagaki H, Mori E (2000) Automated segmentation of human brain MR images aided by fuzzy information granulation and fuzzy inference. IEEE Trans Syst Man Cybern C 30(3):381–395

    Article  Google Scholar 

  • Hathaway RJ, Bezdek JC (2000) Generalized fuzzy c-means clustering strategies using Lp norm distances. IEEE Trans Fuzzy Syst 8(5):576–582

    Article  Google Scholar 

  • IBSR (2012) http://www.cma.mgh.harvard.edu/ibsr/data.html

  • Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Jang JR, Sun C, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Jarritt H, Carson K, Hounsel AR, Visvikis D (2006) The role of PET/CT scanning in radiotherapy planning. Br J Radiol 79(1):S27–S35

    Article  Google Scholar 

  • Krak NC, Boellaard R, Hoekstra OS, Twisk JW, Hoekstra CJ, Lammertsma AA (2005) Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging 32(10):294–230

    Article  Google Scholar 

  • Kwan RKS, Evans AC, Pike GB (1999) MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imaging 18(11):1085-1097

    Article  Google Scholar 

  • Larsen PM (1980) Industrial applications of fuzzy logic control. Int J Man Mach Stud 12(1):3–10

    Article  Google Scholar 

  • Li SZ (2009) Markov random field modeling in image analysis. Springer, Berlin

    MATH  Google Scholar 

  • Liew AC, Yan H, Law NF (2005) Image segmentation based on adaptive cluster prototype estimation. IEEE Trans Fuzzy Syst 13(4):444–453

    Article  Google Scholar 

  • Lim JS (1990) Two-dimensional signal and image processing. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Mamdani EH (1977) Application of fuzzy logic to approximate reasoning using linguistic systems. IEEE Trans Comput C-26(12):1182–1191

    Article  Google Scholar 

  • Maroquin J, Mitte S, Poggio T (1987) Probabilistic solution of ill-posed problems in computational vision. J Am Stat Assoc 82(397):76–89

    Article  Google Scholar 

  • McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  • Nefti S, Oussalah M, Kaymak U (2008) A new fuzzy set merging technique using inclusion-based fuzzy clustering. IEEE Trans Fuzzy Syst 16(1):145–161

    Article  Google Scholar 

  • Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welch C, Hellwig D, Rbe C, Kirsch CM (2005) Comparison of different methods for delineation of 18f-fdg pet–positive tissue for target volume definition in radiotherapy of patients with non–small cell lung cancer. J Nucl Med 46(8):1342–1348

    Google Scholar 

  • Nikou C, Galatsanos NP, Likas A (2007) A class-adaptive spatially variant mixture model for image segmentation. IEEE Trans Image Process 16(4):1121–1130

    Article  MathSciNet  Google Scholar 

  • Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recognit 26(9):1277–1294

    Article  Google Scholar 

  • Pal NR, Pal K, Keller JM, Bezdek J (2005) A possibilistic fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst 13(4):517–530

    Article  MathSciNet  Google Scholar 

  • Sanjay GS, Hebert TJ (1998) Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans Image Process 7(7):1014–1028

    Article  Google Scholar 

  • Shen S, Sandham W, Granat M, Sterr A (2005) MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans Inf Technol Biomed 9(3):459–467

    Article  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern SMC-15(1):116–132

    Article  Google Scholar 

  • Thanh MN, Wu QMJ, Ahuja S (2010) An extension of the standard mixture model for image segmentation. IEEE Trans Neural Netw 21(8):1326–1338

    Article  Google Scholar 

  • Thanh MN, Wu QMJ (2012) Robust student’s-t mixture model with spatial constraints and its application in medical image segmentation. IEEE Trans Med Imaging 31(1):103–116

    Article  Google Scholar 

  • Tolias YA, Panas SM (1998) Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions. IEEE Trans Syst Man Cybern A 28(3):359–369

    Article  Google Scholar 

  • Udupa JK, Samarasekera S (1996) Fuzzy connectedness and object definition: theory, algorithms and applicationa in image segmentation. Graph Models Image Process 58(3):246–261

    Article  Google Scholar 

  • Udupa JK, Wei L, Samarasekera S, Miki Y, Van BMA, Grossman RI (1997) Multiple sclerosis lesion quantification using fuzzy connectedness principles. IEEE Trans Med Imaging 16(5):598–609

    Article  Google Scholar 

  • Yu J, Yang MS (2007) A generalized fuzzy clustering regularizationmodel with optimality tests and model complexity analysis. IEEE Trans Fuzzy Syst 15(5):904–915

    Article  Google Scholar 

  • Zadeh L (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh L (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 3(1):28–44

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm. IEEE Trans Med Imaging 20(1):45–57

    Article  Google Scholar 

  • Zhou Y, Bai J (2007) Multiple abdominal organ segmentation: an atlas-based fuzzy connectedness approach. IEEE Trans Inf Technol Biomed 11(3):348–352

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the anonymous reviewers and the associate editor for their insightful comments that significantly improved the quality of this paper. The work is supported in part by the Canada Research Chair program, AUTO21 Networks of Centres of Excellence, and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Minh Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T.M., Wu, Q.M.J. A fuzzy logic model based Markov random field for medical image segmentation. Evolving Systems 4, 171–181 (2013). https://doi.org/10.1007/s12530-012-9066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-012-9066-1

Keywords

Navigation