Abstract
Fuzzy formal concept analysis enables us to add structure to data by ide ntifying coherent groups of related objects and attributes. In a situation where data is added dynamically, the concept lattice may evolve in different ways—either in content (more objects added to existing concepts) or in structure (entirely new concepts are created). This change can be monitored and quantified by means of a recently defined distance metric. In this paper, we present a new and more efficient algorithm for calculating the fuzzy distance between concepts, and hence between concept lattices. We discuss the interpretation of the distance measure, and illustrate the evolution of concept lattices by simple examples and by an application of the distance measure to lattices derived from UK road safety data.
Access this article
Rent this article via DeepDyve
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig12_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig13_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig14_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig15_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12530-014-9109-x/MediaObjects/12530_2014_9109_Fig16_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
There is significant research effort in systems that do not rely on all classes being known a priori (evolving systems). However, most textbooks on machine learning formulate the problem as finding a function from some subspace of the data vectors to a finite set of known outputs.
The initial study and software implementation was carried out by V. Theurlacher, Univ. of Montpellier, during a project placement.
data.gov.uk/dataset/road-accidents-safety-data.
References
Basseville M, Nikiforov IV (1993) Detection of abrupt changes: theory and application. Prentice-Hall, Inc., USA
Belohlavek R (2002) Granulation and granularity via conceptual structures: a perspective from the point of view of fuzzy concept lattices. Stud Fuzziness Soft Comput 95:265–289
Belohlavek R, Vychodil V (2005) What is a fuzzy concept lattice? In: International Conference on Concept Lattices and their Applications, CLA 2005. Olomouc, Czech Republic, pp 34–45
Bottcher M, Hoppner F, Spiliopoulou M (2008) On exploiting the power of time in data mining. SIGKDD Explor Newsl 10:3–11
Burusco A, Fuentes-Gonzalez R (1994) The study of the L-fuzzy concept lattice. Mathw Soft Comput 1:209–218
Dubois D, Prade H (2008) Gradual elements in a fuzzy set. Soft Comput 12:165–175
Ganter B, Wille R (1998) Formal concept analysis: mathematical foundations. Springer, Berlin
Gennari JH, Langley P, Fisher DH (1989) Models of incremental concept formation. Artif Intell 40:11–61
Krajci S (2003) Cluster based efficient generation of fuzzy concepts. Neural Netw World 13:521–530
Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res Logist 52(1):7–21
Lakhal L, Stumme G (2005) Efficient mining of association rules based on formal concept analysis. In: Ganter B, Stumme G, Wille R (eds) Formal Concept Analysis, Lecture Notes in Computer Science, vol. 3626, pp 180–195. doi:10.1007/11528784_10
Li P, Wu X, Hu X (2012) Mining recurring concept drifts with limited labeled streaming data. ACM Trans Intell Syst Technol 3:1–32
Martin TP (2005) Fuzzy sets in the fight against digital obesity. Fuzzy Sets Syst 156:411–417
Martin TP, Azvine B (2013) The X-mu approach : fuzzy quantities, fuzzy arithmetic and fuzzy association rules. In: IEEE Symposium on the Foundations of Computational Intelligence, 16–19 April 2013. Singapore, pp 24–29. doi:10.1109/FOCI.2013.6602451
Martin TP, Majidian A (2010) Fuzzy measurement of concept evolution in structured data. Europe Patent EP2413253, 2010 (https://data.epo.org/publication-server/rest/v1.0/publication-dates/20120201/patents/EP2413253NWA1/document.pdf)
Martin TP, Majidian A (2013) Finding fuzzy concepts for creative knowledge discovery. Int J Intell Syst 28:93–114
Martin TP, Shen Y, Majidian A (2010) Discovery of time-varying relations using fuzzy formal concept analysis and associations. Int J Intell Syst 25:1217–1248
Martin TP, Majidian A, Cintra ME (2011) Fuzzy formal concept analysis and algorithm. In: UK Computational Intelligence (UKCI 2011), Manchester, UK, pp 61–67
Martin TP, Abd Rahim NH, Majidian A (2012) Measuring change in fuzzy concept lattices. In: UK Computational Intelligence (UKCI 2012). Edinburgh, UK, pp 1–8
Martin TP, Abd Rahim NH, Majidian A (2013) A general approach to the measurement of change in fuzzy concept lattices. Soft Comput 17:2223–2234
Masud MM, Jing G, Khan L, Jiawei H, Thuraisingham B (2008) A practical approach to classify evolving data streams: training with limited amount of labeled data. In: ICDM ‘08. Eighth IEEE International Conference on Data Mining, pp 929–934
Navarro G (2001) A guided tour to approximate string matching. ACM Comput Surv 33:31–88
Sowa JF (1984) Conceptual structures. Addison Wesley, USA
Stepp RE, Michalski RS (1986) Conceptual clustering: inventing goal oriented classifications of structured objects. In: Michalski RS et al (eds) Machine learning: an artificial intelligence approach, vol 2. Morgan Kauffmann, San Mateo
Tversky A (1977) Features of similarity. Psychol Rev 84:327–352
Valtchev P, Missaoui R, Lebrun P (2002) A partition-based approach towards constructing Galois (concept) lattices. Discret Math 256:801–829
Valtchev P, Missaoui R, Godin R (2004) Formal concept analysis for knowledge discovery and data mining: the new challenges. In: Formal concept analysis; Concept lattices, Singapore, pp 352–371
Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Martin, T.P. Change mining in evolving fuzzy concept lattices. Evolving Systems 5, 259–274 (2014). https://doi.org/10.1007/s12530-014-9109-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12530-014-9109-x