Skip to main content
Log in

A dynamically adapted and weighted Bat algorithm in image enhancement domain

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

This paper proposed one improved Bat algorithm (BA) by incorporating one novel dynamic inertia weight and proposed self-adaptive strategies over algorithm’s parameters. Chaotic sequence and developed population diversity metric are employed over BA to perform the local search and generate one improved initial population respectively. The efficacy of the proposed BA is verified by applying it to set the parameters properly of the proposed histogram equalization (HE) variant; called weighted and thresholded Bi-HE (WTBHE). The proper setting of these parameters is time consuming but crucially effects WTBHE’s image enhancement ability. One novel co-occurrence matrix based objective function has been also formulated which facilitates the proposed BA for finding the optimal parameters of WBTHE which produces original brightness preserved enhanced images. Experimental results prove that the proposed BA is superior to simple BA in terms of convergence speed, robustness and maximization of objective function and WBTHE is better than some existing well-known HE variants in brightness preserving image enhancement field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bansal JC, Singh PK, Saraswat M, Verma K, Jadon SS, Abraham A (2011) Inertia weight strategies in particle swarm optimization. In: Third world congress on nature and biologically inspired computing, pp 640–647

  • Boccaletti S, Grebogi C, Lai YC, Mancini H, Maza D (2000) The control of chaos: theory and applications. Phys Rep 329:103–197

    Article  MathSciNet  Google Scholar 

  • Braik M, Sheta A, Ayesh A (2007) Image enhancement using particle swarm optimization. In: Proceedings of the world congress on engineering

  • Caponetto R, Fortuna L, Fazzino S, Xibilia MG (2003) Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans Evol Comput 7:289–304

    Article  Google Scholar 

  • Chen SD, Ramli AR (2003a) Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans Consum Electron 49:1310–1319

    Article  Google Scholar 

  • Chen SD, Ramli AR (2003b) Contrast enhancement using recursive mean separated histogram equalization for scalable brightness preservation. IEEE Trans Consum Electron 49:1301–1309

    Article  Google Scholar 

  • Chen SD, Ramli AR (2004) Preserving brightness in histogram equalization based contrast enhancement techniques. Digit Signal Proc 14:413–428

    Article  Google Scholar 

  • Cheng HD, Shi XJ (2004) A simple and effective histogram equalization approach to image enhancement. Digit Signal Proc 14:158–170

    Article  Google Scholar 

  • Choi C, Lee JJ (1998) Chaotic local search algorithm. Artif Life Robot 2:41–47

    Article  Google Scholar 

  • Coelho LDS, Mariani VC (2008) Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst Appl 34:1905–1913

    Article  Google Scholar 

  • Coelho LDS, Sauer JG, Rudek M (2009) Differential evolution optimization combined with chaotic sequences for image contrast enhancement. Chaos Solitons Fractals 42:522–529

    Article  Google Scholar 

  • Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18

    Article  Google Scholar 

  • Dhal KG, Das S (2015) Diversity conserved chaotic artificial bee colony algorithm based brightness preserved histogram equalization and contrast stretching method. Int J Nat Comput Res 5:45–73

    Article  Google Scholar 

  • Dhal KG, Das S (2017) Chaotic differential-evolution-based fuzzy contrast stretching method. In: Advancements in applied metaheuristic computing, pp 71–94

  • Dhal KG, Quraishi IM, Das S (2015a) Development of firefly algorithm via chaotic sequence and population diversity to enhance the image contrast. Nat Comput 14:1–12

    Article  MathSciNet  Google Scholar 

  • Dhal KG, Quraishi IM, Das S (2015b) Performance enhancement of differential evolution by incorporating lévy flight and chaotic sequence for the cases of satellite images. Int J Appl Metaheuristic Comput 6:69–81

    Article  Google Scholar 

  • Dhal KG, Quraishi IM, Das S (2015c) Performance analysis of chaotic Lévy Bat algorithm and chaotic Cuckoo Search algorithm for gray level image enhancement. In: Mandal J, Satapathy S, Kumar Sanyal M, Sarkar P, Mukhopadhyay A (eds) Information systems design and intelligent applications. Advances in intelligent systems and computing, vol 339. Springer, New Delhi, pp 233–244

    Google Scholar 

  • Dhal KG, Quraishi IM, Das S (2017) An improved cuckoo search based optimal ranged brightness preserved histogram equalization and contrast stretching method. Int J Swarm Intell Res 8:1–29

    Article  Google Scholar 

  • Fister I Jr, Fister D, Yang XS (2013a) A hybrid Bat algorithm. Ski Vestnik Elektrotehni 80:1–7

    MATH  Google Scholar 

  • Fister I, Yang XS, Brest J, Fister I Jr (2013b) Memetic self-adaptive firefly algorithm. In: Swarm intelligence and bio-inspired computation. Elsevier, pp 73–102. ISBN: 978-0-12-405163-8. https://doi.org/10.1016/B978-0-12-405163-8.00004-1

  • Fister I Jr, Fong S, Brest J, Fister I (2014a) A novel hybrid self-adaptive Bat algorithm. Sci World J 2014:1–12

    Google Scholar 

  • Fister I, Yang XS, Brest J, Fister I Jr (2014b) On the randomized Firefly algorithm. In: Yang XS (ed) Cuckoo Search and Firefly algorithm. Studies in computational intelligence, vol 516. Springer, Cham, pp 27–48

    Google Scholar 

  • Gandomi AH, Yang XS (2014) Chaotic Bat algorithm. J Comput Sci 5:224–232

    Article  MathSciNet  Google Scholar 

  • Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, New York

    Google Scholar 

  • Gorai A, Ghosh A (2009) Gray-level image enhancement by particle swarm optimization. In: Proceedings of world congress on nature and biologically inspired computing

  • Gorai A, Ghosh A (2011) Hue preserving colour image enhancement by particle swarm optimization. In: Recent advances in intelligent computational systems (RAICS), pp 563–568

  • Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67:786–804

    Article  Google Scholar 

  • Hashemi S, Kiani S, Noroozi N, Moghaddam ME (2010) An image contrast enhancement method based on genetic algorithm. Pattern Recogn Lett 31:1816–1824

    Article  Google Scholar 

  • Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Graph Vis Image Proc 29:273–285

    Article  Google Scholar 

  • Kim YT (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron 43:1–8

    Article  Google Scholar 

  • Kim M, Chung MG (2008) Recursively separated and weightedhistogram equalization for brightness preservation and contrastenhancement. IEEE Trans Consum Electron 54:1389–1397

    Article  Google Scholar 

  • Leandro CSD, Viviana CM (2009) A novel particle swarm optimization approach using Henon map and implicit filtering local search for economic load dispatch. Chaos Solitons Fractals 39:510–518

    Article  Google Scholar 

  • Liu G, Huang H, Wang S, Chen Z (2012) An improved Bat algorithm with Doppler effect for stochastic optimization. Int J Digit Content Technol Appl (JDCTA) 6:326–336

    Google Scholar 

  • Munteanu C, Rosa A (2001) Evolutionary image enhancement with user behavior modeling. ACM SIGAPP Appl Comput Rev 9:8–14

    Article  Google Scholar 

  • Pal NR, Pal SK (1989) Entropic thresholding. Sig Process 16:97–108

    Article  MathSciNet  Google Scholar 

  • Pal SK, Bhandari D, Kundu MK (1994) Genetic algorithms for optimal image enhancement. Pattern Recogn Lett 15:261–271

    Article  MATH  Google Scholar 

  • Sengee N, Choi HK (2008) Brightness preserving weight clusteringhistogram equalization. IEEE Trans Consum Electron 54:1329–1337

    Article  Google Scholar 

  • Shanmugavadivu P, Balasubramanian K, Muruganandam A (2014) Particle swarm optimized bi-histogram equalization for contrast enhancement and brightness preservation of images. Vis Comput 30:387–399

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  MathSciNet  MATH  Google Scholar 

  • Sheikholeslami R, Kaveh A (2013) A survey of chaos embedded meta-heuristic algorithms. Int J Optim Civ Eng 3:617–633

    Google Scholar 

  • Sowjanya K, Kumar RP (2017) Gray level image enhancement using nature inspired optimization algorithm: an objective based approach. World J Model Simul 13:66–80

    Google Scholar 

  • Walton S, Hassan O, Morgan K, Brown MR (2013) A review of the development and applications of the Cuckoo search algorithm. In: Swarm intelligence and bio-inspired computation, pp 257–271

  • Wang Q, Ward RK (2007) Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE Trans Consum Electron 53:757–764

    Article  Google Scholar 

  • Yang XS (2010a) Nature-inspired metaheuristic algorithms, 2nd edn, Luniver Press

  • Yang XS (2010b) Engineering optimization: an introduction to metaheuristic applications. Wiley, Hoboken

    Book  Google Scholar 

  • Yang XS (2011) Bat algorithm for multiobjective optimization. Int J Bio Inspir Comput 3:267–274

    Article  Google Scholar 

  • Yang XS (2013) Bat algorithm: literature review and applications. Int J Bio Inspir Comput 5:141–149

    Article  Google Scholar 

  • Yang XS, Deb S (2009) Cuckoo search via lévy flight. In: Proceedings of world congress on nature and biologically inspired computing

  • Yang XS, Papa JP (2016) Bio-inspired computation and its applications in image processing: an overview. In: Bio-inspired computation and applications in image processing, pp 1–24

  • Yang X, Yuan J, Yuan J, Mao H (2007) A modified particle swarm optimizer with dynamic adaption. Appl Math Comput 189:1205–1213

    MathSciNet  MATH  Google Scholar 

  • Yang XS (2010c) A new metaheuristic Bat-inspired algorithm, nature inspired cooperative strategies for optimization (NISCO 2010). In: Gonzalez JR et al (eds) Studies computational intelligence, vol 284, Springer, Berlin, pp 65–74

    Google Scholar 

  • Yilmaz S, Kucuksill EU, Cengiz Y (2014) Modified Bat algorithm. Elektronika IR Elektrotechnika 20:71–78

    Article  Google Scholar 

  • Yim C, Bovik AC (2011) Quality assessment of deblocked images. IEEE Trans Image Process 20:88–98

    Article  MathSciNet  MATH  Google Scholar 

  • Zuiderveld K (1994) Contrast limited adaptive histogram equalization. Graphic gems IV. Academic Press Professional, San Diego, pp 474–485

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Gopal Dhal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhal, K.G., Das, S. A dynamically adapted and weighted Bat algorithm in image enhancement domain. Evolving Systems 10, 129–147 (2019). https://doi.org/10.1007/s12530-018-9216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-018-9216-1

Keywords

Navigation