Skip to main content
Log in

Loss of target information in full pixel and subpixel target detection in hyperspectral data with and without dimensionality reduction

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

In most hyperspectral target detection applications, targets are usually small and require both spatial as well as spectral detection. Hyperspectral imaging facilitates target detection (TD) applications greatly, however, due to large spectral content, hyperspectral data requires dimensionality reduction (DR) which also leads to loss of target information both at full pixel and subpixel level. Literature reports many DR and TD algorithms in practice. Several studies have focussed on assessing the loss of target information in DR, however, not much work seems to have been done to assess loss of target information in full pixel and subpixel TD in hyperspectral data with and without DR. This paper seeks to study various combinations of DR techniques combined with full pixel and subpixel TD algorithms. The results indicate that in the case of full pixel targets, both DR and TD contribute to the loss of target information, however, there is more loss of target information in the case when DR precedes TD in comparison to a case where TD is applied without DR. In the case of subpixel TD, however, there appears to be loss of subpixel target information in the case where TD alone is performed in comparison to a case where DR precedes TD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agarwal A, El-Ghazawi T, El-Askary H, Le-Moigne J (2007) Efficient hierarchical-PCA dimension reduction for hyperspectral imagery. In: IEEE international symposium on signal processing and information technology (ISSPIT), Giza, 2008, pp 353–356. https://doi.org/10.1109/ISSPIT.2007.4458191

  • Altmann Y, Halimi A, Dobigeon N, Tourneret JY (2012) Supervised nonlinear spectral unmixing using a post-nonlinear mixing model for hyperspectral imagery. IEEE Trans Image Process 21(6):3017–3025

    Article  MathSciNet  Google Scholar 

  • Angelov PP, Gu X (2018) Deep rule-based classifier with human-level performance and characteristics. Inf Sci 463:196–213

    Article  Google Scholar 

  • Binol H, Ochilov S, Alam MA, Bal A (2016) Target oriented dimensionality reduction of hyperspectral data by Kernel–Fukunaga–Koontz transform. Elsevier Ltd, Amsterdam. https://doi.org/10.1016/j.optlaseng.2016.03.009

    Book  Google Scholar 

  • Boardman JW (1998) Leveraging the high dimensionality of AVIRIS data for improved sub-pixel target unmixing and rejection of false positives: mixture tuned matched filtering. In: Proceedings of the 7th annual JPL airborne geoscience workshop, vol 97, no 1. JPL publication, p 55

  • Boardman JW, Kruse FA, Green RO (1995) Mapping target signatures via partial unmixing of AVIRIS data. In: Summaries V JPL airborne earth science workshop, Pasadena, CA, 01, pp 23–26

  • Borel C, Gerstl S (1994) Nonlinear spectral mixing models for vegetative and soil surfaces. Remote Sens Environ 47(3):403–416

    Article  Google Scholar 

  • Chang C-I (2003) Hyperspectral imaging: techniques for spectral detection and classification. Kluwer, Norwell

    Book  Google Scholar 

  • Chang C-I (2005) Orthogonal subspace projection (OSP) revisited: A comprehensive study and analysis. IEEE Trans Geosci Remote Sens 43(3):502–518

    Article  Google Scholar 

  • Chang C-I, Du Q (2004) Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans Geosci Remote Sens 42(3):608–619

    Article  Google Scholar 

  • Chang CI, Liu JM, Chieu BC, Wang CM, Lo CS, Chung PC, Ren H, Yang CW, Ma DJ (2000) A generalized constrained energy minimization approach to subpixel target detection for multispectral imagery. Opt Eng 39(5):1275–1281

    Article  Google Scholar 

  • Chen JY, Reed SI (1987) A detection algorithm for optical targets in clutter. IEEE Trans Aerosp Electron Syst AES-23(1):46–59

    Article  Google Scholar 

  • Cocks T, Jenssen R, Stewart A, Wilson I, Shields T (1998) The HyMap airborne hyperspectral sensor: the system, calibration and performance. In: Proc. 1st EARSeL workshop on imaging spectroscopy, EARSeL, Paris, pp 37–43

  • Davood A, Safari A (2012) Support vector machine for target detection in hyperspectral images. TS06I—remote sensing II, 6135, pp 1–10

  • Du Q, Chang CI (2004) A signal-decomposed and interference-annihilated approach to hyperspectral target detection. IEEE Trans Geosci Remote Sens 42(4):892–906. https://doi.org/10.1109/TGRS.2003.821887

    Article  Google Scholar 

  • Eismann MT (2012) Hyperspectral remote sensing. SPIE Press, Bellingham. https://doi.org/10.1117/3.899758

    Book  Google Scholar 

  • Fan W, Hu B, Miller J, Li M (2009) Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data. Int J Remote Sens 30(11):2951–2962

    Article  Google Scholar 

  • Farrand WH, Harsanyi JC (2004) Mapping the distribution of mine tailings in the Coeur d’Alene River Valley Idaho, through the use of a constrained energy minimization technique. Remote Sens Environ 59(1):64–76

    Article  Google Scholar 

  • Green AA, Berman M, Switzer P, Craig MD (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26:65–74

    Article  Google Scholar 

  • Gu X, Angelov PP (2018a) Semi-supervised deep rule-based approach for image classification. Appl Soft Comput 68:53–68

    Article  Google Scholar 

  • Gu X, Angelov PP (2018b) A massively parallel deep rule-based ensemble classifier for remote sensing scenes. IEEE Geosci Remote Sens Lett 15(3):345–349

    Article  Google Scholar 

  • Guilfoyle KJ, Althouse ML, Chang CI (2001) A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks. IEEE Trans Geosci Remote Sens 39:2314–2318

    Article  Google Scholar 

  • Harsanyi JC (1993) Detection and classification of subpixel spectral signatures in hyperspectral image sequences, Ph.D. dissertation, Dept. Elect. Eng., Univ. Maryland, Baltimore, MD, USA

  • Harsanyi JC, Chang CI (1994) Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans Geosci Remote Sens 32(4):779–785

    Article  Google Scholar 

  • Hyvarinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 15(4):411–430

    Article  Google Scholar 

  • Kelly EJ (1986) An adaptive detection algorithm. IEEE Trans Aerosp Electon Syst 22(1):115–127

    Article  Google Scholar 

  • Keshava N (2003) A survey of spectral unmixing algorithms. Linc Lab J 14(1):55–78

    Google Scholar 

  • Keshava N, Kerekes J, Manolakis D, Shaw G (2000) An algorithm taxonomy for hyperspectral unmixing. In: Shen SS, Descour MR (eds) Algorithms for multispectral, hyperspectral, and ultraspectral imagery VI, Proceedings of SPIE, vol 4049

  • Koonsanit K, Jaruskulchai C, Eiumnoh A (2012) Band selection for dimension reduction in hyperspectral image using integrated information gain and principal components analysis technique. Int J Mach Learn Comput 2(3):248

    Article  Google Scholar 

  • Kruse FA, Lefkoff AB, Boardman JB, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AF (1993) The spectral image processing system (SIPS) interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 44(2/3):145–163

    Article  Google Scholar 

  • Kruse FA, Boardman JW, Hunnington JF (2003) Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans Geosci Remote Sens 41(6):1388–1400

    Article  Google Scholar 

  • Manolakis D, Shaw G, Keshava N (2000) Comparative analysis of hyperspectral adaptive matched filter detector. In: Proc. SPIE, vol 4049, pp 2–17

  • Manolakis D, Siracusa C, Shaw G (2001) Hyperspectral subpixel target detection using the linear mixing model. IEEE Trans Geosci Remote Sens 39(7):1392–1409

    Article  Google Scholar 

  • Manolakis D, Marden D, Shaw G (2003) Hyperspectral image processing for automatic target detection applications. Linc Lab J 14(1):79–114

    Google Scholar 

  • Muhammad A, Haq I (2011) Linear unmixing and target detection of hyperspectral imagery using OSP. In: International conference on modeling, simulation and control, in proceedings of IPCSIT 2011, vol 10, pp 179–183

  • Petrou M, Foschi PG (1999) Confidence in linear spectral unmixing of single pixels. IEEE Trans Geosci Remote Sens 37:624–626

  • Plaza A, Martínez P, Pérez R, Plaza J (2004) A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE Trans Geosci Remote Sens 42(3):650–663

    Article  Google Scholar 

  • Ramakishna B, Plaza A, Chang C-I, Ren H, Du Q, Chang C-C (2005) Spectral/spatial hyperspectral image compression. In: Motta G, Storer J (eds) Hyperspectral data compression. Springer, New York

  • Ren H, Chang CI (2000) Target-constrained interference-minimized approach to subpixel target detection for hyperspectral images. Opt Eng 39(12):3138–3145. https://doi.org/10.1117/1.132749

    Article  Google Scholar 

  • Rhonda DP, Layne TW, Christine EB, Randolph HW (2008) An adaptive noise reduction technique for improving the utility of hyperspectral data. In: Pecora17—the future of land imaging, Going Operational November 18–20, 2008. https://pdfs.semanticscholar.org/1772/f6943b2a42002b655595eb2a93010836fee8.pdf

  • Robey FC, Fuhrmann DR, Kelly EJ, Nitzberg R (1992) A CFAR adaptive matched filter detector. IEEE Trans Aserosp Electon Syst 38(1):208–216

    Article  Google Scholar 

  • Rodarmel C, Shan J (2002) Principal component analysis for hyperspectral image classification. Surv Land Inf Syst 62(2):115–122

    Google Scholar 

  • Schott JR (2002) Hyperspectral algorithms course notes. Class Notes

  • Settle J (2006) On the effect of variable endmember spectra in the linear mixture model. IEEE Trans Geosci Remote Sens 44:389–396

    Article  Google Scholar 

  • Settle JJ, Drake NA (1993a) Linear mixing and the estimation of ground cover proportions. Int J Remote Sens 14(6):1159–1177

    Article  Google Scholar 

  • Settle JJ, Drake NA (1993b) Linear mixing and the estimation of ground cover proportions. Int J Remote Sens 14:1159–1177

    Article  Google Scholar 

  • Shaw G, Burke H (2003) Spectral imaging for remote sensing. Linc Lab J 14:3–28

    Google Scholar 

  • Shippert P (2004) Why use hyperspectral imagery. Photogramm Eng Remote Sens 70:377–380

    Google Scholar 

  • Song FY, Jiang JW (2007) ICA-based dimensionality reduction and compression of hyperspectral images. J Electron Inf Technol 29(12):2871–2875

    Google Scholar 

  • Wang J, Chang C-I (2006) Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans Geosci Remote Sens 44(6):1586–1600

    Article  Google Scholar 

  • Zabalza J, Ren J, Yang M, Zhang Y, Wang J, Marshall S, Han J (2014) Novel folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing. ISPRS J Photogramm Remote Sens 93:112–122

    Article  Google Scholar 

  • Zhang L, Zhang L, Tao D, Huang X, Du B (2013) Hyperspectral remote sensing image subpixel target detection based on supervised metric learning. In: IEEE transactions on geoscience and remote sensing, vol 52, no 8, pp 4955–4965. https://doi.org/10.1109/TGRS.2013.2286195

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Bhandari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, A., Tiwari, K.C. Loss of target information in full pixel and subpixel target detection in hyperspectral data with and without dimensionality reduction. Evolving Systems 12, 239–254 (2021). https://doi.org/10.1007/s12530-019-09265-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-019-09265-w

Keywords

Navigation