Skip to main content
Log in

An overview on evolving systems and learning from stream data

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

Evolving systems unfolds from the interaction and cooperation between systems with adaptive structures, and recursive methods of machine learning. They construct models and derive decision patterns from stream data produced by dynamically changing environments. Different components that assemble the system structure can be chosen, being rules, trees, neurons, and nodes of graphs amongst the most prominent. Evolving systems relate mainly with time-varying environments, and processing of nonstationary data using computationally efficient recursive algorithms. They are particularly appropriate for online, real-time applications, and dynamically changing situations or operating conditions. This paper gives an overview of evolving systems with focus on system components, learning algorithms, and application examples. The purpose is to introduce the main ideas and some state-of-the-art methods of the area as well as to guide the reader to the essential literature, main methodological frameworks, and their foundations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abonyi J, Babuška R, Szeifert F (2002) Modified gath-geva fuzzy clustering for identification of takagi-sugeno fuzzy models. IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics) 32(5):612–621

    Article  Google Scholar 

  • Agrawal R, Bala R (2008) Incremental bayesian classification for multivariate normal distribution data. Pattern Recognit Lett 29:1873–1876

    Article  Google Scholar 

  • Andonovski G, Angelov P, Blažič S, Škrjanc I (2016) A practical implementation of robust evolving cloud-based controller with normalized data space for heat-exchanger plant. Appl Soft Comput 48:29–38

    Article  Google Scholar 

  • Angelov PP (2002) Evolving rule-based models: a tool for design of flexible adaptive systems. Springer-Verlag, London

    Book  MATH  Google Scholar 

  • Angelov P (2012) Autonomous learning systems: from data streams to knowledge in real-time. Wiley, Hoboken

    Book  Google Scholar 

  • Angelov P, Filev D (2004) An approach to Online identification of Takagi–Suigeno fuzzy models. IEEE Trans Syst Man Cybern Part B-Cybern 34(1):484–498

    Article  Google Scholar 

  • Angelov P, Filev D, Kasabov N (2010) Evolving intelligent systems: methodology and applications. Wiley-IEEE Press, New Jersey

    Book  Google Scholar 

  • Angelov P, Kordon A (2010) Adaptive inferential sensors based on evolving fuzzy models. IEEE Trans Syst Man Cybern Part B Cybern 40(2):529–539

    Article  Google Scholar 

  • Angelov P, Lughofer E, Zhou X (2008) Evolving fuzzy classifiers using different model architectures. Fuzzy Sets Syst 159(23):3160–3182

    Article  MathSciNet  MATH  Google Scholar 

  • Angelov P, Zhou X (2008) Evolving fuzzy-rule-based classifiers from data streams. IEEE Trans Fuzzy Syst 16:1462–1475

    Article  Google Scholar 

  • Angelov P, Ramezani R, Zhou X (2008) Autonomous novelty detection and object tracking in video streams using evolving clustering and takagi-sugeno type neuro-fuzzy system. In: IEEE international joint conference on neural networks (IJCNN), pp. 1456–1463

  • Angelov P, Yager R (2011) Simplified fuzzy rule-based systems using non-parametric antecedents and relative data density. In: 2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS), pp. 62–69

  • Angelov P, Zhou X (2006) Evolving fuzzy systems from data streams in real-time. In: 2006 International Symposium on Evolving Fuzzy Systems, pp. 29–35

  • Angelov P (2010) Evolving Intelligent Systems: Methodology and Applications, chap. Evolving Takagi-Sugeno Fuzzy Systems From Streaming Data (eTS+), pp. 21 – 50. Wiley, New Jersey

    Chapter  Google Scholar 

  • Angelov P (2010) Evolving takagi-sugeno fuzzy systems from streaming data, ets+. In: P. Angelov, D. Filev, N. Kasabov (eds.) Evolving Intelligent Systems: Methodology and Applications. Wiley-Interscience/IEEE Press

  • Angelov P, Gu X (2017) Mice: Multi-layer multi-model images classifier ensemble. In: Proceedings of the IEEE International Conference Cybernetics, pp. 1–8

  • Azeem MF, Hanmandlu H, Ahmad N (2003) Structure identification of generalized adaptive neurofuzzy inference systems. IEEE Trans Fuzzy Syst 11:666–681

    Article  Google Scholar 

  • Beliakov G, Pradera A, Calvo T (2007) Aggregation Functions: A Guide for Practitioners, 1st edn. Springer - Studies in Fuzziness and Soft Comput, Vol 21

  • Blažič S, Angelov P, Škrjanc I (2015) Comparison of approaches for identification of all-data cloud-based evolving systems. IFAC-PapersOnLine 48(10):129–134

    Article  Google Scholar 

  • Blažič S, Škrjanc I, Matko D (2014) A robust fuzzy adaptive law for evolving control systems. Evol Syst 5(1):3–10

    Article  MATH  Google Scholar 

  • Blažič S, Dovžan D, Škrjanc I (2014) Cloud-based identification of an evolving system with supervisory mechanisms. In: Proceedings of IEEE Control Systems Society Multiconference on Systems and Control, pp. 1906–1911

  • Bodyanskiy Y, Tyshchenko O, Kopaliani D (2016) Adaptive learning of an evolving cascade neo-fuzzy system in data stream mining tasks. Evol Syst 7(2):107–116

    Article  Google Scholar 

  • Bodyanskiy Y, Vynokurova O, Volkova V, Boiko O (2018) 2d-neo-fuzzy neuron and its adaptive learning. Inf Technol Manag Sci 21:24–28

    Google Scholar 

  • Bordes A, Bottou L (2005) The huller: a simple and efficient online svm. In: Proceedings of the European Conf on Machine Learning. Springer, New York, pp. 505–512

    Chapter  Google Scholar 

  • Bordignon F, Gomide F (2014) Uninorm based evolving neural networks and approximation capabilities. Neurocomputing 127:13–20

    Article  Google Scholar 

  • Bueno L, Costa P, Mendes I, Cruz E, Leite D (2015) Evolving ensemble of fuzzy models for multivariate time series prediction. In: Proceedings of the IEEE Int Conf on Fuzzy Systems (FUZZ-IEEE), pp. 1–6

  • Doborjeh M, Kasabov N, Doborjeh ZG (2018) Evolving, dynamic clustering of spatio/spectro-temporal data in 3d spiking neural network models and a case study on eeg data. Evol Syst 9:195–211

    Article  Google Scholar 

  • Dovžan D, Logar V, Škrjanc I (2015) Implementation of an evolving fuzzy model (eFuMo) in a monitoring system for a waste-water treatment process. IEEE Trans Fuzzy Syst 23(5):1761–1776

    Article  Google Scholar 

  • Dovžan D, Škrjanc I (2011) Recursive clustering based on a Gustafson-Kessel algorithm. Evol Syst 2(1):15–24

    Article  Google Scholar 

  • Ferdaus M, Pratama M, Anavatti S, Garratt M (2019) Palm: An incremental construction of hyperplanes for data stream regression. IEEE Transactions on Fuzzy Systems, 15p., https://doi.org/10.1109/TFUZZ.2019.2893565

    Article  Google Scholar 

  • Filev D, Tseng F (2006) Novelty detection based machine health prognostics. In: 2006 International Symposium on Evolving Fuzzy Systems, pp. 193–199

  • Fritzke B (1994) Growing cell structures: a self-organizing network for unsupervised and supervised learning. Neural Netw 7:1441–1460

    Article  Google Scholar 

  • Garcia C, Leite D, Škrjanc I (2019) Incremental missing-data imputation for evolving fuzzy granular prediction. IEEE Transactions on Fuzzy Systems p. 15p. https://doi.org/10.1109/TFUZZ.2019.2935688

  • Hapfelmeier A, Pfahringer B, Kramer S (2014) Pruning incremental linear model trees with approximate lookahead. IEEE Trans Knowl Data Eng 26(8):2072–2076

    Article  Google Scholar 

  • Heeswijk M, Miche Y, Lindh-Knuutila T, Hilbers P, Honkela T, Oja E, Lendasse A (2009) Adaptive ensemble models of extreme learning machines for time series prediction. In: C. Alippi, P.C. Polycarpou M., G. Ellinas (eds.) Artificial Neural Networks - ICANN Lecture Notes in Computer Science. Springer - Berlin

  • Hisada M, Ozawa S, Zhang K, Kasabov N (2010) Incremental linear discriminant analysis for evolving feature spaces in multitask pattern recognition problems. Evol Syst 1:17–27

    Article  Google Scholar 

  • Iglesias JA, Ledezma A, Sanchis A (2014) An ensemble method based on evolving classifiers: estacking. In: Proceedings of the IEEE Symp on Evolving and Autonomous Learning Systems (EALS), pp. 1–8

  • Ikonomovska E, Gama J Learning model trees from data streams. In: J.F. Boulicaut, M. Berthold, T. Horváth (eds.) Discovery Science, Lecture Notes in Computer Science, vol. 5255, pp. 52–63. Springer Berlin, Heidelberg

    Chapter  Google Scholar 

  • Ikonomovska E, Gama J, Sebastião R, Gjorgjevik D (2009) Regression trees from data streams with drift detection. In: Proceedings of the 12th International Conference on Discovery Science, DS ’09, pp. 121–135

    Chapter  Google Scholar 

  • Janikow C (1998) Fuzzy decision trees: issues and methods. IEEE Trans Syst Man Cybern Part B-Cybern 28(1):1–14

    Article  Google Scholar 

  • Kangin D, Angelov P, Iglesias JA, Sanchis A (2015) Evolving classifier tedaclass for big data. Procedia Comput Sci 53:9–18

    Article  Google Scholar 

  • Kasabov N (2007) Evolving connectionist systems: the knowledge engineering approach. Springer-Verlag, New York Inc, Secaucus

    MATH  Google Scholar 

  • Kasabov N (2014) Neucube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw 52:62–76

    Article  Google Scholar 

  • Kasabov N, Song Q (2002) DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans Fuzzy Syst 10(2):144–154

    Article  Google Scholar 

  • Klančar G, Škrjanc I (2015) Evolving principal component clustering with a low run-time complexity for LRF data mapping. Appl Soft Comput 35:349–358

    Article  Google Scholar 

  • Kolter J, Maloof M (2007) Dynamic weighted majority: an ensemble method for drifting concepts. J Mach Learn Res 8:2755–2790

    MATH  Google Scholar 

  • Kwok TY, Yeung DY (1997) Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Trans Neural Netw 8(3):630–645

    Article  Google Scholar 

  • Leite D, Ballini R, Costa P, Gomide F (2012) Evolving fuzzy granular modeling from nonstationary fuzzy data streams. Evol Syst 3:65–79

    Article  Google Scholar 

  • Leite D, Costa P, Gomide F (2013) Evolving granular neural networks from fuzzy data streams. Neural Netw 38:1–16

    Article  MATH  Google Scholar 

  • Leite D, Costa P, Gomide F (2010) Granular approach for evolving system modeling. In: Hullermeier E, Kruse R, Hoffmann F (eds) Computational intelligence for knowledge-based systems design, vol 6178. Springer, Berlin - Heidelberg, pp 340–349 Lecture Notes in Computer Science

    Chapter  Google Scholar 

  • Leite D, Costa P, Gomide F (2012) Interval approach for evolving granular system modeling. In: Sayed-Mouchaweh M, Lughofer E (eds) Learning in non-stationary environments. Springer, New York, pp 271–300

    Chapter  Google Scholar 

  • Leite D, Palhares R, Campos V, Gomide F (2015) Evolving granular fuzzy model-based control of nonlinear dynamic systems. IEEE Trans Fuzzy Syst 23:923–938

    Article  Google Scholar 

  • Leite D, Škrjanc I (2019) Ensemble of evolving optimal granular experts, owa aggregation, and time series prediction. Inf Sci 504:95–112

    Article  MathSciNet  Google Scholar 

  • Leite D (2012) Evolving granular systems. Ph.D. thesis, University of Campinas, School of Electrical and Computer Engineering

  • Leite D (2019) Comparison of genetic and incremental learning methods for neural network-based electrical machine fault detection. In: E. Lughofer, M. Sayed-Mouchaweh (eds.) Predictive Maintenance in Dynamic Systems, pp. 231–268. Springer - Cham

  • Leite D, Andonovski G, Škrjanc I, Gomide F (2019) Optimal rule-based granular systems from data streams. IEEE Transactions on Fuzzy Systems, 14p., https://doi.org/10.1109/TFUZZ.2019.2911493

    Article  Google Scholar 

  • Leite D, Costa P, Gomide F (2010) Evolving granular neural network for semi-supervised data stream classification. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8

  • Leite D, Santana M, Borges A, Gomide F (2016) Fuzzy granular neural network for incremental modeling of nonlinear chaotic systems. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 64–71

  • Lemos A, Caminhas W, Gomide F (2010) Fuzzy multivariable gaussian evolving approach for fault detection and diagnosis. In: Hullermeier E, Kruse R, Hoffmann F (eds) Computational intelligence for knowledge-based systems design, vol 6178. Springer, Berlin / Heidelberg, pp 360–369 Lecture Notes in Computer Science

    Chapter  Google Scholar 

  • Lemos A, Caminhas W, Gomide F (2013) Evolving intelligent systems: methods, algorithms and applications. In: Ramanna S, Jain L, Howlett R (eds) Emerging paradigms in machine learning. Springer, New York

    Google Scholar 

  • Lemos A, Gomide F, Caminhas W (2011) Fuzzy evolving linear regression trees. Evol Syst 2(1):1–14

    Article  Google Scholar 

  • Lemos A, Gomide F, Caminhas W (2011) Multivariable gaussian evolving fuzzy modeling system. IEEE Trans Fuzzy Syst 19(1):91–104

    Article  Google Scholar 

  • Leng G, Prasad G, McGinnty TM (2004) An online algorithm for creating self-organizing fuzzy neural networks. Neural Netw 17:1477–1493

    Article  MATH  Google Scholar 

  • Lima E, Hell M, Ballini R, Gomide F (2010) Evolving fuzzy modeling using participatory learning. In: P. Angelov, D. Filev, N. Kasabov (eds.) Evolving intelligent systems: methodology and Applications. Wiley-Interscience/IEEE Press

  • Ljung L (1999) System Identification. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  • Lughofer E (2008) Extensions of vector quantization for incremental clustering. Pattern Recognit 41(3):995–1011

    Article  MATH  Google Scholar 

  • Lughofer ED (2008) FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno fuzzy models. IEEE Trans Fuzzy Syst 16(6):1393–1410

    Article  Google Scholar 

  • Lughofer E, Bouchot JL, Shaker A (2011) Online elimination of local redundancies in evolving fuzzy systems. Evol Syst 2:165–187

    Article  Google Scholar 

  • Lughofer E, Buchtala O (2013) Reliable all-pairs evolving fuzzy classifiers. IEEE Trans Fuzzy Syst 21:625–641

    Article  Google Scholar 

  • Lughofer E, Cernuda C, Kindermann S, Pratama M (2015) Generalized smart evolving fuzzy systems. Evol Syst 6:269–292

    Article  Google Scholar 

  • Lughofer E, Pratama M, Škrjanc I (2018) Incremental rule splitting in generalized evolving fuzzy systems for autonomous drift compensation. IEEE Trans Fuzzy Syst 26(4):1854–1865

    Article  Google Scholar 

  • Lughofer E (2011) Evolving Fuzzy Systems: Methodologies, Advanced Concepts and Applications, vol. 266. Studies in Fuzziness and Soft Computing Series, J. Kacprzyk (Ed.), Springer-Verlag, Berlin Heidelberg

  • Maciel L, Ballini R, Gomide F (2017) An evolving possibilistic fuzzy modeling approach for value-at-risk estimation. Appl Soft Comput 60:820–830

    Article  MATH  Google Scholar 

  • Maciel L, Ballini R, Gomide F (2018) Evolving fuzzy modelling for yield curve forecasting. Int J Econ Bus Res 15:290–311

    Article  MATH  Google Scholar 

  • Malcangi M, Grew P (2017) Evolving connectionist method for adaptive audiovisual speech recognition. Evol Syst 8:85–94

    Article  Google Scholar 

  • Malcangi M, Quan H, Vaini E, Lombardi P, Rienzo M (2018) Evolving fuzzy-neural paradigm applied to the recognition and removal of artefactual beats in continuous seismocardiogram recordings. Evol Syst, 10p., https://doi.org/10.1007/s12530-018-9238-8

  • Pedrycz W, Gomide F (2007) Fuzzy systems engineering: toward human-centric computing. Wiley Interscience, NJ

    Book  Google Scholar 

  • Polikar R (2006) Ensemble based systems in decision making. IEEE Circuits Syst Mag 6:21–45

    Article  Google Scholar 

  • Potts D (2004) Incremental learning of linear model trees. In: ICML ’04: Proceedings of the twenty-first international conference on Machine learning, p. 84. ACM, New York, NY, USA

  • Prasad M, Za’in C, Pratama M, Lughofer E, Ferdaus M, Cai Q (2018) Big data analytics based on panfis mapreduce. Procedia Comput Sci 144:140–152

    Article  Google Scholar 

  • Pratama M, Anavatti S, Angelov P, Lughofer E (2014) Panfis: a novel incremental learning machine. IEEE Trans Neural Netw Learn Syst 25:55–67

    Article  Google Scholar 

  • Pratama M, Anavatti S, Lu J (2015) Recurrent classifier based on an incremental meta-cognitive scaffolding algorithm. IEEE Trans Fuzzy Syst 23:2048–2066

    Article  Google Scholar 

  • Pratama M, Lu J, Lughofer E, Zhang G, Er M (2016) An incremental learning of concept drifts using evolving type-2 recurrent fuzzy neural networks. IEEE Trans Fuzzy Syst 25:1175–1192

    Article  Google Scholar 

  • Pratama M, Pedrycz W, Lughofer E (2018) Evolving ensemble fuzzy classifier. IEEE Trans Fuzzy Syst 26:2552–2567

    Article  Google Scholar 

  • Pratama M, Wang D (2019) Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams. Inf Sci 495:150–174

    Article  MathSciNet  Google Scholar 

  • Precup RE, Teban TA, Albu A, Szedlak-Stinean AI, Bojan-Dragos CA (2018) Experiments in incremental online identification of fuzzy models of finger dynamics. Rom J Inf Sci Technol 21:358–376

    Google Scholar 

  • Rong HJ, Sundararajan N, Huang GB, Zhao GS (2011) Extended sequential adaptive fuzzy inference system for classification problems. Evol Syst 2:71–82

    Article  Google Scholar 

  • Rubio JJ (2009) Sofmls: online self-organizing fuzzy modified least square network. IEEE Trans Fuzzy Syst 17:1296–1309

    Article  Google Scholar 

  • Rubio JJ (2014) Evolving intelligent algorithms for the modelling of brain and eye signals. Appl Soft Comput 14:259–268

    Article  Google Scholar 

  • Rubio JJ (2017) Usnfis: uniform stable neuro fuzzy inference system. Neurocomputing 262:57–66

    Article  Google Scholar 

  • Rubio JJ, Bouchachia A (2017) Msafis: an evolving fuzzy inference system. Soft Comput 21:2357–2366

    Article  Google Scholar 

  • Silva A, Caminhas W, Lemos A, Gomide F (2013) A fast learning algorithm for evolving neo-fuzzy neuron. Appl Soft Comput 14:194–209

    Article  Google Scholar 

  • Silva A, Caminhas W, Lemos A, Gomide F (2015) Adaptive input selection and evolving neural fuzzy networks modeling. Int J Comput Intell Syst 8:3–14

    Article  Google Scholar 

  • Silva S, Costa P, Gouvea M, Lacerda A, Alves F, Leite D (2018) High impedance fault detection in power distribution systems using wavelet transform and evolving neural network. Electr Power Syst Res 154:474–483

    Article  Google Scholar 

  • Silva S, Costa P, Santana M, Leite D (2018) Evolving neuro-fuzzy network for real-time high impedance fault detection and classification. Neural Comput & Applic, 14p., https://doi.org/10.1007/s00521-018-3789-2

  • Soares E, Costa P, Costa B, Leite D (2018) Ensemble of evolving data clouds and fuzzy models for weather time series prediction. Appl Soft Comput 64:445–453

    Article  Google Scholar 

  • Soares E, Camargo H, Camargo S, Leite D (2018) Incremental gaussian granular fuzzy modeling applied to hurricane track forecasting. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8

  • Soleimani-B H, Lucas C, Araabi BN (2010) Recursive gath-geva clustering as a basis for evolving neuro-fuzzy modeling. Evol Syst 1:59–71

    Article  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132

    Article  MATH  Google Scholar 

  • Tung S, Quek C, Guan C (2013) et2fis: an evolving type-2 neural fuzzy inference system. Inf Sci 220:124–148

    Article  Google Scholar 

  • Tzafestas SG, Zikidis KC (2001) Neurofast: on-line neuro-fuzzy art-based structure and parameter learning tsk model. IEEE Trans Syst Man Cybern— Part B 31:797–802

    Article  Google Scholar 

  • Wang W, Vrbanek J (2008) An evolving fuzzy predictor for industrial applications. IEEE Trans Fuzzy Syst 16(6):1439–1449

    Article  Google Scholar 

  • Williamson JR (1996) Gaussian ARTMAP: a neural network for past incremental learning of noisy multidimensional maps. Neural Netw 9(5):881–897

    Article  Google Scholar 

  • Wu S, Er MJ (2000) Dynamic fuzzy neural networks—a novel approach to function approximation. IEEE Trans Syst Man Cybern—Part B 30:358–364

    Google Scholar 

  • Wu S, Er MJ, Gao Y (2001) A fast approach for automatic generation of fuzzy rules by generalized dynamicc fuzzy neural networks. IEEE Trans Fuzzy Syst 9:578–594

    Article  Google Scholar 

  • Yager R (1990) A model of participatory learning. IEEE Trans Syst Man Cybern 20(5):1229–1234

    Article  Google Scholar 

  • Young P (1984) Recursive estimation and time-series analysis: an introduction. Springer-Verlag, New York Inc, New York

    Book  MATH  Google Scholar 

  • Yourdshahi ES, Angelov P, Marcolino L, Tsianakas G (2018) Towards evolving cooperative mapping for large-scale uav teams. In: Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2262–2269

  • Za’in C, Pratama M, Lughofer E, Anavatti S (2017) Evolving type-2 web news mining. Appl Soft Comput 54:200–220

    Article  Google Scholar 

  • Zdešar A, Dovžan D, Škrjanc I (2014) Self-tuning of 2 DOF control based on evolving fuzzy model. Appl Soft Comput 19:403–418

    Article  Google Scholar 

  • Škrjanc I (2009) Confidence interval of fuzzy models: an example using a waste-water treatment plant. Chemom Intell Lab Syst 96:182–187

    Article  Google Scholar 

  • Škrjanc I (2015) Evolving fuzzy-model-based design of experiments with supervised hierarchical clustering. IEEE Trans Fuzzy Syst 23(4):861–871

    Article  Google Scholar 

  • Škrjanc I, Andonovski G, Ledezma A, Sipele O, Iglesias JA, Sanchis A (2018) Evolving cloud-based system for the recognition of drivers’ actions. Expert Syst Appl 99:231–238

    Article  Google Scholar 

  • Škrjanc I, Blažič S, Lughofer E, Dovžan D (2019) Inner matrix norms in evolving Cauchy possibilistic clustering for classification and regression from data streams. Inf Sci 478:540–563

    Article  Google Scholar 

  • Škrjanc I, Dovžan D (2015) Evolving Gustafson-Kessel possibilistic c-means clustering. Procedia Comput Sci 53:191–198

    Article  Google Scholar 

  • Škrjanc I, Iglesias JA, Sanchis A, Leite D, Lughofer E, Gomide F (2019) Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: a survey. Inf Sci 490:344–368

    Article  Google Scholar 

  • Škrjanc I, Ozawa S, Ban T, Dovžan D (2018) Large-scale cyber attacks monitoring using evolving cauchy possibilistic clustering. Appl Soft Comput 62:592–601

    Article  Google Scholar 

  • Škrjanc I (2019) Cluster-volume-based merging approach for incrementally evolving fuzzy Gaussian clustering - eGAUSS+. IEEE Trans Fuzzy Syst pp. 1–11. https://doi.org/10.1109/TFUZZ.2019.2931874

Download references

Funding

This work was supported by Instituto Serrapilheira (Grant No. Serra-1812-26777), Javna Agencija za Raziskovalno Dejavnost RS (Grant No. P2-0219) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 305906/2014-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Leite.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, D., Škrjanc, I. & Gomide, F. An overview on evolving systems and learning from stream data. Evolving Systems 11, 181–198 (2020). https://doi.org/10.1007/s12530-020-09334-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-020-09334-5

Keywords

Navigation