Abstract
This paper proposes a new evolving fuzzy model constructed with an unsupervised recursive clustering algorithm with participatory learning and multivariable Gaussian membership functions. The proposed model, called evolving fuzzy with multivariable Gaussian participatory learning and multi-innovations recursive weighted least squares, uses first-order Takagi-Sugeno functional rules. The rules are extracted by the clustering algorithm that can add a new cluster, delete, merge or update existing clusters. The clusters are created using a compatibility measure and an arousal mechanism. The compatibility measure is computed by Euclidian or Mahalanobis distance according to the cluster’s number of samples. The clusters exclusion method combines age and population to exclude inactive clusters. Redundant clusters are merged if there is a noticeable overlap between two clusters. The consequent parameters are updated by a multi-innovations weighted least squares recursive algorithm. The performance of the eFMI is evaluated and compared with alternative state-of-the-art evolving models in times series forecasting and non-linear system identification problems. Computational experiments and comparisons suggest the proposed model performs better or comparable than the alternative evolving models.












Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Notes
The dataset assumes the temperature observations of the three series (Death Valey, Ottawa, and Lisbon) in sequence.
References
Aguiar C, Leite D (2020) Unsurpervised fuzzy eIX:evolving internal-eXternal fuzzy clustering. In: Proceedings of the IEEE conference on evolving and adaptive intelligent systems (EAIS). Bari, Italy. pp 1–8. https://doi.org/10.1109/EAIS48028.2020.9122774
Aliperti A, Bechini A, Marcelloni F, Renda A (2019) A fuzzy density-based clustering algorithm for streaming data. In: Proceedings of the IEEE international conference on fuzzy systems (FUZZ-IEEE). New Orleans, LA, USA. pp 1–6. https://doi.org/10.1109/FUZZ-IEEE.2019.8858909
Angelov P (2002) Evolving rule-based models: a tool for design of flexible adaptive systems. Springer, Berlin. https://doi.org/10.1007/978-3-7908-1794-2
Angelov P (2011) Fuzzily connected multimodel systems evolving autonomously from data streams. IEEE Trans Syst Man Cybern Part B (Cybernetics) 41(4):898–910. https://doi.org/10.1109/TSMCB.2010.2098866
Angelov P, Buswell R (2001) Evolving rule-based models: a tool for intelligent adaptation. In: Proceedings of the 9th Joint IFSA World Congress and 20th NAFIPS International Conference, vol 2. IEEE, pp 1062–1067. https://doi.org/10.1109/NAFIPS.2001.944752
Angelov P, Filev D (2004) An approach to online identification of Takagi–Sugeno fuzzy models. IEEE Trans Syst Man Cybern Part B (Cybernetics) 34(1):484–498. https://doi.org/10.1109/TSMCB.2003.817053
Angelov P, Filev D (2005) Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models. In: Proceedings of the 14th IEEE international conference on fuzzy systems. FUZZ-IEEE ’05, pp 1068–1073. https://doi.org/10.1109/FUZZY.2005.1452543
Angelov P, Yager R (2011) Simplified fuzzy rule-based systems using non-parametric antecedents and relative data density. In: Proceedings of the workshop on evolving and adaptive intelligent systems (EAIS). IEEE, pp 62–69. https://doi.org/10.1109/EAIS.2011.5945926
Angelov P, Zhou X (2006) Evolving fuzzy systems from data streams in real-time. In: Proceedings of the international symposium on evolving fuzzy systems. Ambelside, UK. pp 29–35. https://doi.org/10.1109/ISEFS.2006.251157
Angelov P, Zhou X (2008) On line learning fuzzy rule-based system structure from data streams. In: Proceedings of the IEEE international conference on fuzzy systems (IEEE World Congress on Computational Intelligence). IEEE, pp 915–922. https://doi.org/10.1109/FUZZY.2008.4630479
Angelov P, Filev D, Kasabov N (2008) Guest editorial evolving fuzzy systems-preface to the special section. IEEE Trans Fuzzy Syst 16(6):1390–1392. https://doi.org/10.1109/TFUZZ.2008.2006743
Angelov P, Filev D, Kasabov N (2010a) Evolving intelligent systems: methods and applications, 1st edn. Wiley & IEEE Press, Hoboken. https://doi.org/10.1002/9780470569962
Angelov P, Filev DP, Kasabov N (2010b) Evolving Takagi-Sugeno fuzzy systems from streaming data (eTS+). In: Evolving intelligent systems: methodology and applications. IEEE, pp 21–50. https://doi.org/10.1002/9780470569962.ch2
Angelov P, Gu X, Príncipe J (2018) Autonomous learning multimodel systems from data streams. IEEE Trans Fuzzy Syst 26(4):2213–2224. https://doi.org/10.1109/TFUZZ.2017.2769039
Bezerra C, Costa B, Guedes L, Angelov P (2020) An evolving approach to data streams clustering based on typicality and eccentricity data analytics. Inf Sci 518:13–28. https://doi.org/10.1016/j.ins.2019.12.022
Blažič S, Škrjanc I (2020) Incremental fuzzy C-regression clustering from streaming data for local-model-network identification. IEEE Trans Fuzzy Syst 28(4):758–767. https://doi.org/10.1109/TFUZZ.2019.2916036
Blažič S, Dovžan D, Škrjanc I (2014) Cloud-based identification of an evolving system with supervisory mechanisms. In: Proceedings of the international symposium on intelligent control (ISIC). IEEE, pp 1906–1911. https://doi.org/10.1109/ISIC.2014.6967642
Box G, Jenkins G (1976) Time series analysis: forecasting and control, 2nd edn. Holden-Day, San Francisco
Diebold F, Mariano R (2002) Comparing predictive accuracy. J Bus Econ Stat 20(1):134–144. https://doi.org/10.1198/073500102753410444
Ding F, Liu PX, Liu G (2010) Multiinnovation least-squares identification for system modeling. IEEE Trans Syst Man Cybern Part B (Cybernetics) 40(3):767–778. https://doi.org/10.1109/TSMCB.2009.2028871
Ferdaus MM, Pratama M, Anavatti SG, Garratt MA (2019) Palm: an incremental construction of hyperplanes for data stream regression. IEEE Trans Fuzzy Syst 27(11):2115–2129. https://doi.org/10.1109/TFUZZ.2019.2893565
Garcia C, Esmin A, Leite D, Škrjanc I (2019a) Evolvable fuzzy systems from data streams with missing values: with application to temporal pattern recognition and cryptocurrency prediction. Pattern Recognit Lett 128:278–282. https://doi.org/10.1016/j.patrec.2019.09.012
Garcia C, Leite D, Skrjanc I (2019b) Incremental missing-data imputation for evolving fuzzy granular prediction. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2019.2935688
Iglesias J, Angelov P, Ledezma A, Sanchis A (2009) Modelling evolving user behaviours. In: Proceedings of the IEEE workshop on evolving and self-developing intelligent systems. IEEE, pp 16–23. https://doi.org/10.1109/ESDIS.2009.4938994
Kasabov N (2001) Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning. IEEE Trans Syst Man Cybern Part B (Cybernetics) 31(6):902–918. https://doi.org/10.1109/3477.969494
Kasabov N, Song Q (1999) Dynamic evolving fuzzy neural networks with ”m-out-of-n” activation nodes for on-line adaptive systems, Technical report TR99/04, Department of information science, University of Otago, 1–29
Kasabov N, Song Q (2002) DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans Fuzzy Syst 10(2):144–154. https://doi.org/10.1109/91.995117
Leite D, Škrjanc I (2019) Ensemble of evolving optimal granular experts, OWA aggregation, and time series prediction. Inf Sci 504:95–112. https://doi.org/10.1016/j.ins.2019.07.053
Leite D, Gomide F, Ballini R, Costa P (2011) Fuzzy granular evolving modeling for time series prediction. In: Proceedings of the IEEE international conference on fuzzy systems (FUZZ-IEEE 2011). Taipei, Taiwan. pp 2794–2801. https://doi.org/10.1109/FUZZY.2011.6007452
Leite D, Ballini R, Costa P, Gomide F (2012) Evolving fuzzy granular modeling from nonstationary fuzzy data streams. Evol Syst 3(2):65–79. https://doi.org/10.1007/s12530-012-9050-9
Leite D, Gomide F, Škrjanc I (2019) Multiobjective optimization of fully autonomous evolving fuzzy granular models. In: Proceedings of the IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, pp 1–7. https://doi.org/10.1109/FUZZ-IEEE.2019.8858964
Leite D, Škrjanc I, Gomide F (2020) An overview on evolving systems and learning from stream data. Evol Syst 11:181–198. https://doi.org/10.1007/s12530-020-09334-5
Lemos A, Caminhas W, Gomide F (2010) Fuzzy multivariable Gaussian evolving approach for fault detection and diagnosis. In: Computational intelligence for knowledge-based systems design. IPMU 2010, vol 6178. Springer, Berlin, pp 360–369. https://doi.org/10.1007/978-3-642-14049-5_37
Lemos A, Caminhas W, Gomide F (2011) Multivariable Gaussian evolving fuzzy modeling system. IEEE Trans Fuzzy Syst 19(1):91–104. https://doi.org/10.1109/TFUZZ.2010.2087381
Lughofer E (2008a) FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno fuzzy models. IEEE Trans Fuzzy Syst 16(6):1393–1410. https://doi.org/10.1109/TFUZZ.2008.925908
Lughofer E (2008b) Extensions of vector quantization for incremental clustering. Pattern Recognit 41(3):995–1011. https://doi.org/10.1016/j.patcog.2007.07.019
Lughofer E (2011) Evolving fuzzy systems: methodologies, advanced concepts and applications, ch 2. Springer, New York, pp 45–87. https://doi.org/10.1007/978-3-642-18087-3
Lughofer E (2012) Flexible evolving fuzzy inference systems from data streams (FLEXFIS++). In: Sayed-Mouchaweh M, Lughofer E (eds) Learning in non-stationary environments. Springer, New York, pp 205–245. https://doi.org/10.1007/978-1-4419-8020-5_9
Lughofer E (2013) On-line assurance of interpretability criteria in evolving fuzzy systems: achievements, new concepts and open issues. Inf Sci 251:22–46. https://doi.org/10.1016/j.ins.2013.07.002
Lughofer E (2020) Variants of recursive consequent parameters learning in evolving neuro-fuzzy systems. In: Proceedings of the IEEE conference on evolving and adaptive intelligent systems (EAIS). IEEE, pp 1–10. https://doi.org/10.1109/EAIS48028.2020.9122696
Lughofer E, Angelov P (2011) Handling drifts and shifts in on-line data streams with evolving fuzzy systems. Appl Soft Comput 11(2):2057–2068. https://doi.org/10.1016/j.asoc.2010.07.003
Lughofer E, Guardiola C (2008) Applying evolving fuzzy models with adaptive local error bars to on-line fault detection. In: Proceedings of the 3rd international workshop on genetic and evolving systems. IEEE, pp 35-40. https://doi.org/10.1109/GEFS.2008.4484564
Lütkepohl H (2005) New introduction to multiple time series analysis. Springer Science & Business Media, Berlin
Maciel L, Gomide F, Ballini R (2012a) An enhanced approach for evolving participatory learning fuzzy modeling. In: Proceedings of the IEEE conference on evolving and adaptive intelligent systems. Madrid, Spain. pp 23–28. https://doi.org/10.1109/EAIS.2012.6232799
Maciel L, Lemos A, Gomide F, Ballini R (2012b) Evolving fuzzy systems for pricing fixed income options. Evol Syst 3:5–18. https://doi.org/10.1007/s12530-011-9042-1
Okabe A, Boots B, Sugihara K, Chiu S (2000) Spatial tessellations: concepts and applications of voronoi diagrams, 43rd edn. Wiley, Chichester. https://doi.org/10.2307/2687299
Pratama M, Anavatti SG, Lughofer E (2013) Evolving fuzzy rule-based classifier based on GENEFIS. In: Proceedings of the IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, pp 1–8. https://doi.org/10.1109/FUZZ-IEEE.2013.6622526
Rong HJ, Yang ZX, Wong PK (2020) Robust and noise-insensitive recursive maximum correntropy-based evolving fuzzy system. IEEE Trans Fuzzy Syst 28(9):2277–2284. https://doi.org/10.1109/TFUZZ.2019.2931871
Silva A, Caminhas W, Lemos A, Gomide F (2013) Evolving neo-fuzzy neural network with adaptive feature selection. In: Proceedings of the BRICS congress on computational intelligence and 11th Brazilian congress on computational intelligence. IEEE, pp 341–349. https://doi.org/10.1109/BRICS-CCI-CBIC.2013.64
Silva A, Caminhas W, Lemos A, Gomide F (2014) A fast learning algorithm for evolving neo-fuzzy neuron. Appl Soft Comput 14:194–209. https://doi.org/10.1016/j.asoc.2013.03.022
Škrjanc I (2020) Cluster-volume based merging concept for incrementally evolving fuzzy Gaussian clustering-eGAUSS+. IEEE Trans Fuzzy Syst 28(9):2222–2231. https://doi.org/10.1109/TFUZZ.2019.2931874
Škrjanc I, Ozawa S, Ban T, Dovžan D (2018) Large-scale cyber attacks monitoring using evolving cauchy possibilistic clustering. Appl Soft Comput 62:592–601. https://doi.org/10.1016/j.asoc.2017.11.008
Škrjanc I, Iglesias J, Sanchis A, Leite D, Lughofer E, Gomide F (2019a) Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: a survey. Inf Sci 490:344–368. https://doi.org/10.1016/j.ins.2019.03.060
Škrjanc I, Blažič S, Lughofer E, Dovžan D (2019b) Inner matrix norms in evolving cauchy possibilistic clustering for classification and regression from data streams. Inf Sci 478:540–563. https://doi.org/10.1016/j.ins.2018.11.040
Subhrajit S, Pratama M, Sundaram S (2019) A novel spatio-temporal fuzzy inference system (spatfis) and its stability analysis. Inf Sci 505:84–99. https://doi.org/10.1016/J.INS.2019.07.056
Tung S, Quek C, Guan C (2013) eT2FIS: an evolving type-2 neural fuzzy inference system. Inf Sci 220:124–148. https://doi.org/10.1016/j.ins.2012.02.031
UCI (2020) UC Irvine machine learning repository. https://archive.ics.uci.edu/ml/index.php
Wang D, Zeng X, Keane J (2010) A structure evolving learning method for fuzzy systems. Evol Syst 1:83–95. https://doi.org/10.1007/s12530-010-9009-7
Xydeas C, Angelov P, Chiao S-Y, Reoullas M (2006) Advances in classification of EEG signals via evolving fuzzy classifiers and dependent multiple HMMs. Comput Biol Med 36(10):1064–1083. https://doi.org/10.1016/j.compbiomed.2005.09.006
Yager RR (1990) A model of participatory learning. IEEE Trans Syst Man Cybern 20(5):1229–1234. https://doi.org/10.1109/21.59986
Zhou X, Angelov P (2007) Autonomous visual self-localization in completely unknown environment using evolving fuzzy rule-based classifier. In: Proceedings of the IEEE symposium on computational intelligence in security and defense applications. IEEE, pp 131–138. https://doi.org/10.1109/CISDA.2007.368145
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Rodrigues, F.P.S., Silva, A.M. & Lemos, A.P. Evolving fuzzy predictor with multivariable Gaussian participatory learning and multi-innovations recursive weighted least squares: eFMI. Evolving Systems 13, 667–686 (2022). https://doi.org/10.1007/s12530-022-09421-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12530-022-09421-9
Keywords
Profiles
- Alisson Marques Silva View author profile