Skip to main content

Advertisement

Log in

Chimp optimization algorithm in multilevel image thresholding and image clustering

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

Multilevel image thresholding and image clustering, two extensively used image processing techniques, have sparked renewed interest in recent years due to their wide range of applications. The approach of yielding multiple threshold values for each color channel to generate clustered and segmented images appears to be quite efficient and it provides significant performance, although this method is computationally heavy. To ease this complicated process, nature inspired optimization algorithms are quite handy tools. In this paper, the performance of Chimp Optimization Algorithm (ChOA) in image clustering and segmentation has been analyzed, based on multilevel thresholding for each color channel. To evaluate the performance of ChOA in this regard, several performance metrics have been used, namely, Segment evolution function, peak signal-to-noise ratio, Variation of information, Probability Rand Index, global consistency error, Feature Similarity Index and Structural Similarity Index, Blind/Referenceless Image Spatial Quality Evaluatoe, Perception based Image Quality Evaluator, Naturalness Image Quality Evaluator. This performance has been compared with eight other well known metaheuristic algorithms: Particle Swarm Optimization Algorithm, Whale Optimization Algorithm, Salp Swarm Algorithm, Harris Hawks Optimization Algorithm, Moth Flame Optimization Algorithm, Grey Wolf Optimization Algorithm, Archimedes Optimization Algorithm, African Vulture Optimization Algorithm using two popular thresholding techniques-Kapur’s entropy method and Otsu’s class variance method. The results demonstrate the effectiveness and competitive performance of Chimp Optimization Algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdollahzadeh B, Gharehchopogh FS, Mirjalili S (2021) African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems. Comput Ind Eng 158:107408. ISSN 0360–8352. https://doi.org/10.1016/j.cie.2021.107408

  • Aldahdooh A, Masala E, Van Wallendael G, Barkowsky M (2018) Framework for reproducible objective video quality research with case study on PSNR implementations. Dig Signal Process 77:195–206

    Article  Google Scholar 

  • Barik D, Mondal M (2010) Object identification for computer vision using image segmentation. In: 2010 2nd international conference on education technology and computer, pp V2-170-V2-172. https://doi.org/10.1109/ICETC.2010.5529412

  • Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10:191–203

    Article  Google Scholar 

  • Biogeography-Based Optimization Algorithm and its application to clustering optimization and medical image segmentation. In: IEEE Access 7:28810–28825, 2019. https://doi.org/10.1109/ACCESS.2019.2901849.67, ISSN 0965-9978

  • Borsotti M, Campadelli P, Schettini R (1998) Quantitative evaluation of color image segmentation results. Pattern Recognit Lett 19(8):741–747. https://doi.org/10.1016/S0167-8655(98)00052-X (ISSN 0167-8655)

    Article  MATH  Google Scholar 

  • Borsotti M, Campadelli P, Schettini R (1998) Quantitative evaluation of color image segmentation results. Pattern Recognit Lett 19(8):741–747 (ISSN 0167-8655)

    Article  MATH  Google Scholar 

  • Brajevic I , Tuba M, Bacanin N (2012) Multilevel image thresholding selection based on the Cuckoo Search Algorithm. Pankaj Upadhyay, Jitender Kumar Chhabra

  • Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ (2006) Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graphic 30(1):9–15

    Article  Google Scholar 

  • Demirci R, Güvenç ve U, Kahraman H (2014) ”GÖRÜNTüLERİN RENK UZAYI YARDIMIYLA AYRIŞTIRILMASI”, İleri Teknoloji Bilimleri Dergisi, c. 3, sayı. 1, ss. 1-8, Ağu

  • Demirhan A, Törü M, Güler I (2015) Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks. IEEE J Biomed Health Inf 19:1451–1458

    Article  Google Scholar 

  • Dhiman Gaurav (2021) SSC: a hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowl Based Syst 222. https://doi.org/10.1016/j.knosys.2021.106926 (ISSN 0950–7051)

    Article  Google Scholar 

  • Djerou L, Khelil N, Dehimi HE, Batouche M (2009) Automatic multilevel thresholding using binary particle swarm optimization for image segmentation. In: International conference of soft computing and pattern recognition 2009, pp 66–71. https://doi.org/10.1109/SoCPaR.2009.25

  • Farshi T, Drake JH, özcan E (2020) A multimodal particle swarm optimization-based approach for image segmentation. Expert Syst Appl 149:113233 (ISSN 0957-4174)

    Article  Google Scholar 

  • Gao H, Dou L, Chen W, Xie G (2011) The applications of image segmentation techniques in medical CT images. In: Proceedings of the 30th Chinese control conference, pp 3296–3299

  • Haralick RM, Kelly GL (1969) Pattern recognition with measurement space and spatial clustering for multiple images. Proc IEEE 57(4):654–665. https://doi.org/10.1109/PROC.1969.7020

    Article  Google Scholar 

  • Hashim FA, Hussain K, Houssein EH et al (2021) Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 51:1531–1551

    Article  Google Scholar 

  • Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872 (ISSN 0167-739X)

    Article  Google Scholar 

  • Houssein Essam H, Emam Marwa M, Ali Abdelmgeid A (2021) An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2021.115651 (ISSN 0957–4174)

    Article  Google Scholar 

  • Jia H, Ma J, Song W (2019) Multilevel thresholding segmentation for color image using modified moth-flame optimization. IEEE Access 7:44097–44134. https://doi.org/10.1109/ACCESS.2019.2908718

    Article  Google Scholar 

  • Jolion J-M, Meer P, Bataouche S (1991) Robust clustering with applications in computer vision. IEEE Trans Pattern Anal Mach Intell 13(8):791–802

    Article  Google Scholar 

  • Kaidi W, Khishe M, Mohammadi M (2022) Optimization dynamic levy flight chimp, systems knowledge-based. ISSN 235235:107625. https://doi.org/10.1016/j.knosys.2021.107625 (ISSN 0950-7051)

  • Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing 29(3):273–285. https://doi.org/10.1016/0734-189X(85)90125-2 (ISSN 0734-189X)

    Article  Google Scholar 

  • Kapur’s entropy based optimal multilevel image segmentation using Crow Search Algorithm. Appl Soft Comput 97(Part B):105522, 2020 ISSN 1568-4946

  • Kaur M, Kaur R, Singh N et al (2021) SChoA: a newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications. Eng Comput. https://doi.org/10.1007/s00366-020-01233-2

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks, pp 1942–1948, vol 4. https://doi.org/10.1109/ICNN.1995.488968

  • Kharrich M, Mohammed OH, Kamel S, Aljohani M, Akherraz M, Mosaad MI (2021) Optimal design of microgrid using chimp optimization algorithm. In: 2021 IEEE international conference on automation/XXIV congress of the Chilean Association of Automatic Control (ICA-ACCA), pp 1–5. https://doi.org/10.1109/ICAACCA51523.2021.9465336

  • Khishe M, Mosavi MR (2020) Classification of underwater acoustical dataset using neural network trained by Chimp Optimization Algorithm. Appl Acoust. https://doi.org/10.1016/j.apacoust.2019.107005 (ISSN 0003-682X)

    Article  Google Scholar 

  • Khishe M, Mosavi MR (2020) Chimp optimization algorithm. Expert Syst Appl 149:113338 (ISSN 0957-4174)

    Article  Google Scholar 

  • Khishe M, Nezhadshahbodaghi M, Mosavi MR, Martín D (2021) A weighted Chimp Optimization Algorithm. IEEE Access 9:158508–158539. https://doi.org/10.1109/ACCESS.2021.3130933

    Article  Google Scholar 

  • Kiani H, Safabakhsh R, Khadangi E (2009) Fast recursive segmentation algorithm based on Kapur’s entropy. In: 2009 2nd international conference on computer, control and communication, pp 1–6. https://doi.org/10.1109/IC4.2009.4909269

  • Lanthier Y, Bannari A, Haboudane D, Miller JR, Tremblay N (2008) Hyperspectral data segmentation and classification in precision agriculture: a multi-scale analysis. In: IGARSS 2008–2008 IEEE international geoscience and remote sensing symposium, pp II-585-II-588. https://doi.org/10.1109/IGARSS.2008.4779060

  • Liu J, Yang Y-H (1994a) Multiresolution color image segmentation. IEEE Trans Pattern Anal Mach Intell 16:689–700

    Article  Google Scholar 

  • Liu J, Yang Y-H (1994b) Multiresolution color image segmentation. IEEE Trans Pattern Anal Mach Intell 16(7):689–700. https://doi.org/10.1109/34.297949

    Article  MathSciNet  Google Scholar 

  • Lu X, Zhang M (2010) The animation and comics content retrieval model based on analysis of clustered group. In: International conference on biomedical engineering and computer science 2010, pp 1–4. https://doi.org/10.1109/ICBECS.2010.5462355

  • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. University of California Press, Oakland, pp 281–297

  • MATLAB (2021) 9.10.0.1602886 (R2021a). Natick, Massachusetts: The MathWorks Inc

  • Mirjalili S (2014) Seyed Mohammad Mirjalili, Andrew Lewis, Grey Wolf optimizer. Adv Eng Softw 69:46–61 (ISSN 0965-9978)

    Article  Google Scholar 

  • Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006 (ISSN 0950-7051)

    Article  Google Scholar 

  • Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili Seyed Mohammad (2017) Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191 (ISSN 0965-9978)

    Article  Google Scholar 

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm, advances in engineering software, volume 95, p 51-X (Zhang, D. Wang and H. Chen, Improved)

  • Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708. https://doi.org/10.1109/TIP.2012.2214050

    Article  MathSciNet  MATH  Google Scholar 

  • Mittal A, Soundararajan R, Bovik AC (2013) Making a “Completely Blind. Image Quality Analyzer”. IEEE Signal Process Lett 20(3):209–212. https://doi.org/10.1109/LSP.2012.2227726

  • Muthukrishnan R, Radha M (2011) Edge detection techniques for image segmentation. Int J Comput Sci Inf Technol 3(6):259

    Google Scholar 

  • Nagadurga T, Narasimham PVRL, Vakula VS, Devarapalli R, Márquez FPG (2021) Enhancing global maximum power point of solar photovoltaic strings under partial shading conditions using chimp optimization algorithm. Energies 14:4086. https://doi.org/10.3390/en14144086

    Article  Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  MathSciNet  Google Scholar 

  • Ouadfel S, Taleb-Ahmed A (2016) Social spiders optimization and flower pollination algorithm for multilevel image thresholding: a performance study. Expert Syst Appl 55:566–584

    Article  Google Scholar 

  • Pedram HBS, Pashaei E (2021) Data clustering using chimp optimization algorithm. In: 2021 11th international conference on computer engineering and knowledge (ICCKE), pp 296–301. https://doi.org/10.1109/ICCKE54056.2021.9721483

  • Pei Z, Zhao Y, Liu Z (2009) Image segmentation based on differential evolution algorithm. In: International conference on image analysis and signal processing 2009, pp 48–51. https://doi.org/10.1109/IASP.2009.5054643

  • Rahkar Farshi TK, Ardabili A (2021) A hybrid firefly and particle swarm optimization algorithm applied to multilevel image thresholding. Multim Syst 27:125–142

    Article  Google Scholar 

  • Rahkar Farshi T, Demirci R, Feizi-Derakhshi MR (2018) Image clustering with optimization algorithms and color space. Entropy (Basel) 20(4):296. https://doi.org/10.3390/e20040296 (PMID: 33265387; PMCID: PMC7512815)

    Article  Google Scholar 

  • Reed S, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H (2016) Generative adversarial text to image synthesis. In: International conference on machine learning, pp 1060–1069. PMLR

  • Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25:1077–1097. https://doi.org/10.1007/s00521-014-1597-x

    Article  Google Scholar 

  • Sharma A, Chaturvedi R, Dwivedi U, Kumar S, Reddy S (2018) Firefly algorithm based Effective gray scale image segmentation using multilevel thresholding and Entropy function. Int J Pure Appl Math 118

  • Tianqing H, Khishe M, Mohammadi M, Parvizi G-R, Taher SH, Karim TA (2021) Rashid real-time, COVID-19 diagnosis from X-ray images using deep CNN and extreme learning machines stabilized by chimp optimization algorithm. Biomed Signal Process Control 68:102764. ISSN 1746-8094. https://doi.org/10.1016/j.bspc.2021.102764

  • Venkatanath N, Praneeth D, Maruthi Chandrasekhar Bh, Channappayya SS, Medasani SS (2015) Blind image quality evaluation using perception based features. In: 2015 twenty first national conference on communications (NCC), pp 1–6. https://doi.org/10.1109/NCC.2015.7084843.

  • Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  • Wang Z, Ma Y, Cheng F, Yang L (2010) Review of pulse-coupled neural networks. Image Vis Comput 28(1):5–13

    Article  Google Scholar 

  • Wang J, Khishe M, Kaveh M et al (2021) Binary Chimp Optimization Algorithm (BChOA): a new binary meta-heuristic for solving optimization problems. Cogn Comput 13:1297–1316. https://doi.org/10.1007/s12559-021-09933-7

    Article  Google Scholar 

  • Wong MT, He X, Yeh W (2011) Image clustering using Particle Swarm Optimization. In: IEEE congress of evolutionary computation (CEC) 2011, pp 262–268. https://doi.org/10.1109/CEC.2011.5949627

  • Yan Z, Zhang J, Yang Z, Tang J (2021) Kapur’s entropy for underwater multilevel thresholding image segmentation based on whale optimization algorithm. In: IEEE access, vol 9, pp 41294–41319. https://doi.org/10.1109/ACCESS.2020.3005452

Download references

Funding

The authors did not receive any funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirza Muntasir Nishat.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisham, Z.K., Haque, M.M., Rahman, M.S. et al. Chimp optimization algorithm in multilevel image thresholding and image clustering. Evolving Systems 14, 605–648 (2023). https://doi.org/10.1007/s12530-022-09443-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-022-09443-3

Keywords