Abstract
We consider a class of infeasible, path-following methods for convex quadratric programming. Our methods are designed to be effective for solving both nondegerate and degenerate problems, where degeneracy is understood to mean the failure of strict complementarity at a solution. Global convergence and a polynomial bound on the number of iterations required is given. An implementation, CQP, is available as part of GALAHAD. We illustrate the advantages of our approach on the CUTEr and Maros–Meszaros test sets.





Similar content being viewed by others
Notes
Available from http://galahad.rl.ac.uk/galahad-www/. A Matlab interface is also provided.
When \(\ell \le 2\), the exact line minimizer of \(\phi \big (v_{k,\ell }(\alpha );\tau \big )\) is found by calculus.
References
Anitescu, M., Lesaja, G., Potra, F.A.: Equivaence between different formulations of the linear complementarity problem. Optim. Methods Softw. 7(3–4), 265–290 (1997)
Billups, S.C., Ferris, M.C.: Convergence of an infeasible interior-point algorithm from arbitrary positive starting points. SIAM J. Optim. 6(2), 316–325 (1996)
Cartis, C., Gould, N.I.M.: Finding a point in the relative interior of a polyhedron. Technical Report RAL-TR-2006-016, Rutherford Appleton Laboratory. Chilton (2006)
Colombo, M., Gondzio, J.: Further development of multiple centrality correctors for interior point methods. Comput. Optim. Appl. 41(3), 277–305 (2008)
Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods. MPS-SIAM Series on Optimization. SIAM publications, Philadelphia (2000)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)
Graña Drummond, L.M., Svaiter, B.F.: On well definedness of the central path. J. Optim. Theory Appl. 102(2), 223–237 (1999)
Duff, I.S., Reid, J.K.: The design of MA48: a code for the direct solution of sparse unsymmetric linear systems of equations. Trans. ACM Math. Softw. 22(2), 187–226 (1996)
Dunaway, D.K.: Calculation of zeros of a real polynomial through factorization using Euclid’s algorithm. SIAM J. Numer. Anal. 11(6), 1087–1104 (1974)
Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)
Gondzio, J.: Multiple centrality corrections in a primal-dual method for linear programming. Comput. Optim. Appl. 6(2), 137–156 (1996)
Gould, N.I.M., Orban, D., Toint, Ph.L.: \(\sf CUTEr\) (and \(\sf SifDec \)), a constrained and unconstrained testing environment, revisited. Trans. ACM Math. Softw. 29(4), 373–394 (2003)
Gould, N.I.M., Orban, D., Toint, Ph.L.: \(\sf GALAHAD \)—a library of thread-safe fortran 90 packages for large-scale nonlinear optimization. Trans. ACM Math. Softw. 29(4), 353–372 (2003)
Gould, N.I.M., Robinson, D.P.: A second derivative SQP method: global convergence. SIAM J. Optim. 20(4), 2023–2048 (2010)
Gould, N.I.M., Robinson, D.P.: A second derivative SQP method: local convergence and practical issues. SIAM J. Optim. 20(4), 2049–2079 (2010)
Gould, N.I.M., Toint, Ph.L.: Preprocessing for quadratic programming. Math. Program. B 100(1), 95–132 (2004)
Gupta, A.: WSMP: Watson sparse matrix package part I—direct solution of symmetric sparse system. Research Report RC 21886. IBM T. J. Watson Research Center, Yorktown Heights (2010)
Hogg, J.D., Scott, J.A.: A note on the solve phase of a multicore solver. Technical Report RAL-TR-2010-007, Rutherford Appleton Laboratory, Chilton (2010)
HSL. A collection of Fortran codes for large-scale scientific computation (2011). http://www.hsl.rl.ac.uk
Ji, J., Potra, F.A., Huang, S.: Predictor–corrector method for linear complementarity problems with polynomial complexity and superlinear convergence. J. Optim. Theory Appl. 85(1), 187–199 (1995)
Kojima, M., Mizuno, S., Noma, T.: Limiting behavior of trajectories generated by a continuation method for monotone complementarity problems. Math. Oper. Res. 15(4), 662–675 (1990)
Liu, X., Potra, F.A.: Predictor-corrector methods for sufficient linear complementarity problems in a wide neighborhood of the central path. Optim. Methods Softw. 20(1), 145–168 (2005)
Liu, X., Potra, F.A.: Corrector–predictor methods for sufficient linear complementarity problems in a wide neighborhood of the central path. SIAM J. Optim. 17(3), 871–890 (2006)
Lustig, I.J., Marsten, R.E., Shanno, D.F.: Computational experience with a primal–dual interior point method for linear programming. Linear Algebra Appl. 152, 191–222 (1991)
Madsen, K., Reid, J.K.: Fortran subroutines for finding polynomial zeros. Technical Report AERE-R 7986, AERE Harwell Laboratory, Harwell (1975)
Maros, I., Meszaros, C.: A repository of convex quadratic programming problems. Optim. Methods Softw. 11–12, 671–681 (1999)
McCormick, G.P., Witzgall, C.: Logarithmic SUMT limits in convex programming. Math. Program. 90(1), 113–145 (2001)
Megiddo, N.: Pathways to the optimal set in linear programming. In: Megiddo, N. (ed.) Progress in Mathematical Programming, pp. 131–158. Springer, New-York (1989)
Mehrotra, S.: On the implementation of a primal–dual interior point method. SIAM J. Optim. 2, 575–601 (1992)
Mizuno, S.: A superlinearly convergent infeasible-interior-point algorithm for geometrical LCPs without a strictly complementary condition. Math. Oper. Res. 21(2), 382–400 (1996)
Mizuno, S., Todd, M.J., Ye, Y.: On adaptive-step primal–dual interior-point algorithms for linear programming. Math. Oper. Res. 18, 964–981 (1993)
Monteiro, R.D.C., Tsuchiya, T.: Limiting behavior of the derivatives of certain trajectories associated with a monotone horizontal linear complementarity problem. Math. Oper. Res. 21(4), 793–814 (1996)
Potra, F.A.: A superlinearly convergent predictor–corrector method for degenerate LCP in a wide neighborhood of the central path with \({O}(\sqrt{n}{L})\)-iteration complexity. Math. Program. 100(2), 317–337 (2004)
Potra, F.A.: Primal–dual affine scaling interior point methods for linear complementarity problems. SIAM J. Optim. 19(1), 114–143 (2008)
Potra, F.A., Sheng, R.: Superlinearly convergent infeasible-interior-point algorithm for degenerate lcp. J. Optim. Theory Appl. 97(2), 249–269 (1998)
Potra, F.A., Stoer, J.: On a class of superlinearly convergent polynomial time interior point methods for sufficient LCP. SIAM J. Optim. 20(3), 1333–1363 (2009)
Schenk, O., Gärtner, K.: On fast factorization pivoting methods for symmetric indefinite systems. Electron. Trans. Numer. Anal. 23, 158–179 (2006)
Siegel, C.L.: Topics in Complex Function Theory. Elliptic Functions and Uniformization Theory, vol. 1. Wiley, Chichester (1988)
Stoer, J.: High order long-step methods for solving linear complemenarity problems. Ann. Oper. Res. 103 (2001)
Stoer, J.: Analysis of interior-point paths. J. Res. Natl. Inst. Stand. Technol. 111(2) (2006)
Stoer, J., Wechs, M.: The complexity of high-order predictor-corrector methods for solving sufficient linear complementarity problems. Optim. Methods Softw. 10(2), 393–417 (1998)
Stoer, J., Wechs, M.: Infeasible-interior-point paths for sufficient linear complementarity problems and their analyticity. Math. Program. 83(1–3), 407–423 (1998)
Stoer, J., Wechs, M.: On the analyticity properties of infeasible-interior-point paths for monotone linear complementarity problems. Numer. Math. 81, 631–645 (1999)
Stoer, J., Wechs, M., Mizuno, S.: High order infeasible-interior-point methods for solving sufficient linear complementarity problems. Math. Oper. Res. 23(4), 832–862 (1998)
Sturm, J.F.: Superlinear convergence of an algorithm for monotone linear complementarity problems, when no strictly complementary solution exists. Math. Oper. Res. 24(1), 72–94 (1999)
Väliaho, H.: \(P_*\)-matrices are just sufficient. Linear Algebra Appl. 239, 103–108 (1996)
Wright, M.H.: Interior methods for constrained optimization. Acta Numer. 1, 341–407 (1992)
Wright, S.J.: Primal–Dual Interior-Point Methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1997)
Wright, S.J., Orban, D.: Local convergence of the Newton/log-barrier method for degenerate problems. Math. Oper. Res. 27(3), 585–613 (2002)
Ye, Y., Güler, O., Tapia, R.A., Zhang, Y.: A quadratically convergent \({O}(\sqrt{n}{L})\)-iteration algorithm for linear programming. Math. Program. 59, 151–162 (1993)
Zhang, Y.: On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem. SIAM J. Optim. 4(1), 208–227 (1994)
Zhang, Y., Zhang, D.: On polynomiality of the Mehrotra-type predictor–corrector interior-point algorithms. Math. Program. 68, 303–318 (1995)
Zhao, G., Sun, J.: On the rate of local convergence of high-order-infeasible-path- following algorithms for \(P_*\)-linear complementarity problems. Comput. Optim. Appl. 14(3), 293–307 (1999)
Acknowledgments
This work was supported by the EPSRC grants EP/E053351/1, EP/F005369/1 and EP/H026053/1 and NSERC Discovery Grant 299010-04. We are extremely grateful to a referee and associate editor for comments that lead to important clarifications of our numerical results.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gould, N.I.M., Orban, D. & Robinson, D.P. Trajectory-following methods for large-scale degenerate convex quadratic programming. Math. Prog. Comp. 5, 113–142 (2013). https://doi.org/10.1007/s12532-012-0050-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12532-012-0050-3