Abstract
Quasi-Newton methods based on the symmetric rank-one (SR1) update have been known to be fast and provide better approximations of the true Hessian than popular rank-two approaches, but these properties are guaranteed under certain conditions which frequently do not hold. Additionally, SR1 is plagued by the lack of guarantee of positive definiteness for the Hessian estimate. In this paper, we propose cubic regularization as a remedy to relax the conditions on the proofs of convergence for both speed and accuracy and to provide a positive definite approximation at each step. We show that the n-step convergence property for strictly convex quadratic programs is retained by the proposed approach. Extensive numerical results on unconstrained problems from the CUTEr test set are provided to demonstrate the computational efficiency and robustness of the approach.



Similar content being viewed by others
References
Anandkumar, A., Ge, R.: Efficient approaches for escaping higher order saddle points in non-convex optimization. (2016). arXiv preprint arXiv:1602.05908
Bellavia, S., Morini, B.: Strong local convergence properties of adaptive regularized methods for nonlinear least squares. IMA J. Numer. Anal. 35, dru021 (2014)
Benson, H.Y., Shanno, D.F.: Interior-point methods for nonconvex nonlinear programming: cubic regularization. Comput. Optim. Appl. 58, 323 (2014)
Bianconcini, T., Liuzzi, G., Morini, B., Sciandrone, M.: On the use of iterative methods in cubic regularization for unconstrained optimization. Comput. Optim. Appl. 60(1), 35–57 (2015)
Bianconcini, T., Sciandrone, M.: A cubic regularization algorithm for unconstrained optimization using line search and nonmonotone techniques. Optim. Methods Softw. 1–28 (2016)
Birgin, E.G., Gardenghi, J.L., Martınez, J.M., Santos, S.A., Toint, Ph. L.: Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models. Report naXys-05-2015, University of Namur, Belgium (2015)
Broyden, C.G.: Quasi-newton methods and their application to function minimisation. Math. Comput. 21(99), 368–381 (1967)
Broyden, G.C.: The convergence of a class of double-rank minimization algorithms 2. the new algorithm. IMA J. Appl. Math. 6(3), 222–231 (1970)
Byrd, R.H., Khalfan, H.F., Schnabel, R.B.: Analysis of a symmetric rank-one trust region method. SIAM J. Optim. 6, 1025–1039 (1996)
Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results. Math. Program. Ser. A 127, 245–295 (2011)
Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity. Math. Program. Ser. A 130, 295–319 (2011)
Conn, A.R., Gould, N.I.M., Toint, P.L.: Convergence of quasi-newton matrices generated by the symmetric rank one update. Math. Program. 50(1–3), 177–195 (1991)
Conn, A.R., Gould, N., Toint, Ph.L.: Constrained and unconstrained testing environment. http://www.cuter.rl.ac.uk/Problems/mastsif.shtml. Accessed 01 Feb 2018
Conn, A.R., Gould, N.I.M., Toint, P.L.: Convergence of quasi-newton matrices generated by the symmetric rank one update. Math. Program. 50, 177–195 (1991)
Davidon, W.C.: Variance algorithm for minimization. Comput. J. 10(4), 406–410 (1968)
Davidon, W.C.: Variable metric method for minimization. SIAM J. Optim. 1(1), 1–17 (1991)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Technical report, Argonne National Laboratory (2001)
Dussault, Jean-Pierre: Simple unified convergence proofs for the trust-region and a new arc variant. Technical report, Technical report, University of Sherbrooke, Sherbrooke, Canada (2015)
Feldman, S.I.: A fortran to c converter. In: ACM SIGPLAN Fortran Forum, vol. 9, pp. 21–22. ACM (1990)
Fiacco, A.V., McCormick, G.P.: Nonlinear programming: sequential unconstrained minimization techniques. Research Analysis Corporation, McLean Virginia. Republished in 1990 by SIAM, Philadelphia (1968)
Fletcher, R.: Practical Methods of Optimization. Wiley, Chichester (1987)
Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13(3), 317–322 (1970)
Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. Comput. J. 6(2), 163–168 (1963)
Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Scientific Press, London (1993)
Goldfarb, D.: Sufficient conditions for the convergence of a variable metric algorithm. In: Fletcher, R. (ed.) Optimization, pp. 273–281. Academic Press, New York (1969)
Goldfarb, D.: A family of variable-metric methods derived by variational means. Mathematics of computation 24(109), 23–26 (1970)
Göllner, T., Hess, W., Ulbrich, S.: Geometry optimization of branched sheet metal products. PAMM 12(1), 619–620 (2012)
Gould, N.I.M., Porcelli, M., Toint, P.L.: Updating the regularization parameter in the adaptive cubic regularization algorithm. Comput. Optim. Appl. 53(1), 1–22 (2012)
Griewank, A.: The modification of Newton’s method for unconstrained optimization by bounding cubic terms. Technical Report NA/12, Department of Applied Mathematics and Theoretical Physics, University of Cambridge (1981)
Griewank, A., Fischer, J., Bosse, T.: Cubic overestimation and secant updating for unconstrained optimization of c 2, 1 functions. Optim. Methods Softw. 29(5), 1075–1089 (2014)
Hsia, Y., Sheu, R.-L., Yuan, Y.-X.: On the p-regularized trust region subproblem (2014). arXiv preprint arXiv:1409.4665
Huang, H.Y.: Unified approach to quadratically convergent algorithms for function minimization. J. Optim. Theory Appl. 5(6), 405–423 (1970)
Khalfan, H.F., Byrd, R.H., Schnabel, R.B.: A theoretical and experimental study of the symmetric rank-one update. SIAM J. Optim. 3(1), 1–24 (1993)
Liu, X., Sun, J.: Global convergence analysis of line search interior-point methods for nonlinear programming without regularity assumptions. J. Optim. Theory Appl. 125(3), 609–628 (2005)
Sha, L., Wei, Z., Li, L.: A trust region algorithm with adaptive cubic regularization methods for nonsmooth convex minimization. Comput. Optim. Appl. 51(2), 551–573 (2012)
Martınez, J.M., Raydan, M.: Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization. Technical report (2015)
Murtagh, B.A., Sargent, R.W.H.: A constrained minimization method with quadratic convergence. Optimization, pp. 215–246 (1969)
Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Math. Program. Ser. A 108, 177–205 (2006)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer, Berlin (1999)
Oren, S.S., Luenberger, D.G.: Self-scaling variable metric (ssvm) algorithms. Manag. Sci. 20(5), 863–874 (1974)
Oren, S.S., Luenberger, D.G.: Self-scaling variable metric (ssvm) algorithms: Part i: Criteria and sufficient conditions for scaling a class of algorithms. Manag. Sci. 20(5), 845–862 (1974)
Oren, S.S., Spedicato, E.: Optimal conditioning of self-scaling variable metric algorithms. Math. Program. 10(1), 70–90 (1976)
Powell, M.J.D.: Recent advances in unconstrained optimization. Math. Program. 1, 26–57 (1971)
Schiela, A.: A flexible framework for cubic regularization algorithms for non-convex optimization in function space. Technical report (2014)
Shanno, D.D., Phua, K.H.: Remark on algorithm 500. minimization of unconstrained multivariate functions. Trans. Math. Softw. 6(4), 618–622 (1980)
Shanno, D.F.: Conditioning of quasi-newton methods for function minimization. Math. Comput. 24(111), 647–656 (1970)
Shanno, D.F.: Conjugate gradient methods with inexact searches. Math. Oper. Res. 3(3), 244–256 (1978)
Shanno, D.F., Phua, K.H.: Matrix conditioning and nonlinear optimization. Math. Program. 14(1), 149–160 (1978)
Sherman, J., Morrison, W.J.: Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix. In: Annals of Mathematical Statistics, volume 20(4), pp. 621–621. INST MATHEMATICAL STATISTICS IMS BUSINESS OFFICE-SUITE 7, 3401 INVESTMENT BLVD, HAYWARD, CA 94545 (1949)
Vanderbei, R.J.: AMPL models. http://orfe.princeton.edu/~rvdb/ampl/nlmodels. Accessed 01 August 2016
Vanderbei, R.J., Shanno, D.F.: An interior-point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13, 231–252 (1999)
Weiser, M., Deuflhard, P., Erdmann, B.: Affine conjugate adaptive Newton methods for nonlinear elastomechanics. Optim. Methods Softw. 22(3), 413–431 (2007)
Wolfe, P.: Another variable metric method. Technical report, working paper (1967)
Wolfe, P.: Convergence conditions for ascent methods. SIAM Rev. 11(2), 226–235 (1969)
Wolfe, P.: Convergence conditions for ascent methods. ii: Some corrections. SIAM Rev. 13(2), 185–188 (1971)
Acknowledgements
We would like to thank Daniel Bienstock and Andreas Waechter for their handling of the paper as Editor and Associate Editor, respectively, for MPC. We would also like to thank the two anonymous referees whose feedback and suggestions have greatly improved the paper.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
See Table 1.
Rights and permissions
About this article
Cite this article
Benson, H.Y., Shanno, D.F. Cubic regularization in symmetric rank-1 quasi-Newton methods. Math. Prog. Comp. 10, 457–486 (2018). https://doi.org/10.1007/s12532-018-0136-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12532-018-0136-7