Skip to main content
Log in

On the impact of running intersection inequalities for globally solving polynomial optimization problems

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

We consider global optimization of nonconvex problems whose factorable reformulations contain a collection of multilinear equations of the form \(z_e = \prod _{v \in e} {z_v}\), \(e \in E\), where E denotes a set of subsets of cardinality at least two of a ground set. Important special cases include multilinear and polynomial optimization problems. The multilinear polytope is the convex hull of the set of binary points z satisfying the system of multilinear equations given above. Recently Del Pia and Khajavirad introduced running intersection inequalities, a family of facet-defining inequalities for the multilinear polytope. In this paper we address the separation problem for this class of inequalities. We first prove that separating flower inequalities, a subclass of running intersection inequalities, is NP-hard. Subsequently, for multilinear polytopes of fixed degree, we devise an efficient polynomial-time algorithm for separating running intersection inequalities and embed the proposed cutting-plane generation scheme at every node of the branch-and-reduce global solver BARON. To evaluate the effectiveness of the proposed method we consider two test sets: randomly generated multilinear and polynomial optimization problems of degree three and four, and computer vision instances from an image restoration problem Results show that running intersection cuts significantly improve the performance of BARON and lead to an average CPU time reduction of 50% for the random test set and of 63% for the image restoration test set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anthony, M., Boros, E., Crama, Y., Gruber, A.: Quadratic reformulations of nonlinear binary optimization problems. Math. Program. 162(1), 115–144 (2017). https://doi.org/10.1007/s10107-016-1032-4

    Article  MathSciNet  MATH  Google Scholar 

  2. Bao, X., Khajavirad, A., Sahinidis, N.V., Tawarmalani, M.: Global optimization of nonconvex problems with multilinear intermediates. Math. Program. Comput. 7, 1–37 (2015)

    Article  MathSciNet  Google Scholar 

  3. Barahona, F., Jünger, M., Reinelt, G.: Experiments in quadratic \(0-1\) programming. Math. Program. 44, 127–137 (1989)

    Article  MathSciNet  Google Scholar 

  4. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. J. ACM 30, 479–513 (1983)

    Article  MathSciNet  Google Scholar 

  5. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24, 597–634 (2009)

    Article  MathSciNet  Google Scholar 

  6. Berthold, T., Gamrath, G., Hendel, G., Heinz, S., Koch, T., Pfetsch, M., Vigerske, S., Waniek, R., Winkler, M., Wolter, K.: SCIP 3.2, User’s Manual (2016)

  7. Bienstock, D., Munoz, G.: LP furmulations for polynomial optimization problems. SIAM J. Optim. 28(2), 1121–1150 (2018)

    Article  MathSciNet  Google Scholar 

  8. Bonami, P., Günlük, O., Linderoth, J.: Globally solving nonconvex quadratic programming problems with box constraints via integer programming methods. Math. Program. Comput. (2018). https://doi.org/10.1007/s12532-018-0133-x

    Article  MathSciNet  MATH  Google Scholar 

  9. Buchheim, C., Rinaldi, G.: Efficient reduction of polynomial zero-one optimization to the quadratic case. SIAM J. Optim. 18, 1398–1413 (2007)

    Article  MathSciNet  Google Scholar 

  10. Crama, Y.: Concave extensions for non-linear \(0-1\) maximization problems. Math. Program. 61, 53–60 (1993)

    Article  Google Scholar 

  11. Crama, Y., Rodríguez-Heck, E.: A class of valid inequalities for multilinear \(0-1\) optimization problems. Discrete Optim. 25, 28–47 (2017)

    Article  MathSciNet  Google Scholar 

  12. Del Pia, A., Khajavirad, A.: A polyhedral study of binary polynomial programs. Math. Oper. Res. 42(2), 389–410 (2017)

    Article  MathSciNet  Google Scholar 

  13. Del Pia, A., Khajavirad, A.: On decomposability of multilinear sets. Math. Program. (2017). https://doi.org/10.1007/s10107-017-1158-z

    Article  MATH  Google Scholar 

  14. Del Pia, A., Khajavirad, A.: The multilinear polytope for acyclic hypergraphs. SIAM J. Optim. 28, 1049–1076 (2018)

    Article  MathSciNet  Google Scholar 

  15. Del Pia, A., Khajavirad, A.: The running intersection relaxation of the multilinear polytope. Optim. Online manuscript 2018/05/6618 (2018)

  16. Dolan, E., More, J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  17. Fix, A., Gruber, A., Boros, E., Zabih, R.: A graph cut algorithm for higher-order Markov random fields. In: 2011 International Conference on Computer Vision, pp. 1020–1027 (2011). https://doi.org/10.1109/ICCV.2011.6126347

  18. GAMS Performance tools. Available at http://www.gams.com/help/topic/gams.doc/solvers/allsolvers.pdf

  19. Helmberg, C., Rendl, F.: Solving quadratic \(0-1\) problems by semidefinite programs and cutting planes. Math. Program. 82, 291–315 (1998)

    MathSciNet  MATH  Google Scholar 

  20. IBM: CPLEX Optimizer (2016). http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

  21. Karp, R.M.: Reducibility among combinatorial problems. In: Millera, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations. New York (1972)

  22. Khajavirad, A., Sahinidis, N.V.: A hybrid LP/NLP paradigm for global optimization relaxations. Math. Program. Comput. (2018). https://doi.org/10.1007/s12532-018-0138-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24, 657–668 (2009)

    Article  MathSciNet  Google Scholar 

  24. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I-convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  Google Scholar 

  25. Meyer, C.A., Floudas, C.A.: Trilinear monomials with positive or negative domains: facets of the convex and concave envelopes. In: Floudas, C.A., Pardolos, P.M. (eds.) Frontiers in Global Optimization, vol. 103, pp. 327–352. Kluwer Academic Publishers, Norwell (2003)

    Google Scholar 

  26. Meyer, C.A., Floudas, C.A.: Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J. Glob. Optim. 29, 125–155 (2004)

    Article  MathSciNet  Google Scholar 

  27. Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59, 503–526 (2014)

    Article  MathSciNet  Google Scholar 

  28. Padberg, M.: The boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45, 139–172 (1989)

    Article  MathSciNet  Google Scholar 

  29. POLIP: Library for polynomially constrained mixed-integer programming (2014). http://polip.zib.de

  30. Rikun, A.D.: A convex envelope formula for multilinear functions. J. Glob. Optim. 10, 425–437 (1997)

    Article  MathSciNet  Google Scholar 

  31. Ryoo, H.S., Sahinidis, N.V.: Analysis of bounds for multilinear functions. J. Glob. Optim. 19, 403–424 (2001)

    Article  MathSciNet  Google Scholar 

  32. Sahinidis, N.: Sahinidis optimization group website. http://archimedes.cheme.cmu.edu/?q=baron

  33. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

    MATH  Google Scholar 

  34. Sherali, H.D.: Convex envelopes of multilinear functions over a unit hypercube and over special discrete sets. Acta Math. Vietnam. 22, 245–270 (1997)

    MathSciNet  MATH  Google Scholar 

  35. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3, 411–430 (1990)

    Article  MathSciNet  Google Scholar 

  36. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (1984)

    Article  MathSciNet  Google Scholar 

  37. Tawarmalani, M.: Inclusion certificates and simultaneous convexification of functions. Working paper (2010). http://www.optimization-online.org/DB_FILE/2010/09/2722.pdf

  38. Tawarmalani, M., Richard, J.P., Chung, K.: Strong valid inequalities for orthogonal disjunctions and bilinear covering sets. Math. Program. 124, 481–512 (2010)

    Article  MathSciNet  Google Scholar 

  39. Tawarmalani, M., Richard, J.P., Xiong, C.: Explicit convex and concave envelopes through polyhedral subdivisions. Math. Program. 138, 531–577 (2013)

    Article  MathSciNet  Google Scholar 

  40. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)

    Article  MathSciNet  Google Scholar 

  41. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  MathSciNet  Google Scholar 

  42. The Optimization Firm, LLC: NLP and MINLP test problems. https://minlp.com/nlp-and-minlp-test-problems

  43. Yajima, Y., Fujie, T.: A polyhedral approach for nonconvex quadratic programming problems with box constraints. J. Glob. Optim. 13, 151–170 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aida Khajavirad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Alberto Del Pia and Aida Khajavirad were partially supported by National Science Foundation award CMMI-1634768.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Pia, A., Khajavirad, A. & Sahinidis, N.V. On the impact of running intersection inequalities for globally solving polynomial optimization problems. Math. Prog. Comp. 12, 165–191 (2020). https://doi.org/10.1007/s12532-019-00169-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-019-00169-z

Keywords

Mathematics Subject Classification

Navigation