Abstract
In this paper, we develop a new algorithmic framework to solve black-box problems with integer variables. The strategy included in the framework makes use of specific search directions (so called primitive directions) and a suitably developed nonmonotone line search, thus guaranteeing a high level of freedom when exploring the integer lattice. First, we describe and analyze a version of the algorithm that tackles problems with only bound constraints on the variables. Then, we combine it with a penalty approach in order to solve problems with simulation constraints. In both cases we prove finite convergence to a suitably defined local minimum of the problem. We report extensive numerical experiments based on a test bed of both bound-constrained and generally-constrained problems. We show the effectiveness of the method when compared to other state-of-the-art solvers for black-box integer optimization.







Similar content being viewed by others
Notes
A new version of NOMAD with better functionalities, e.g. the Nelder Mead search and the possibility to specify the direction type for poll intensification, was released while this paper was under review (for further details visit the website https://www.gerad.ca/nomad/).
References
Abramson, M.A., Audet, C., Chrissis, J.W., Walston, J.C.: Mesh adaptive direct search algorithms for mixed variable optimization. Optim. Lett. 3(1), 35–47 (2009)
Abramson, M.A., Audet, C., Couture, G., Dennis Jr., J.E., Le Digabel, S.: The NOMAD project. http://www.gerad.ca/nomad
Abramson, M.A., Audet, C., Dennis Jr., J.E.: Filter pattern search algorithms for mixed variable constrained optimization problems. Pac. J. Optim. 3(3), 477–500 (2007)
Abramson, M.A., Audet, C., Dennis Jr., J.E., Le Digabel, S.: OrthoMADS: a deterministic MADS instance with orthogonal directions. SIAM J. Optim. 20(2), 948–966 (2009)
Audet, C., Dennis Jr., J.E.: Pattern search algorithms for mixed variable programming. SIAM J. Optim. 11(3), 573–594 (2001)
Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer Series in Operations Research and Financial Engineering. Springer, Berlin (2017)
Audet, C., Le Digabel, S., Tribes, C.: The mesh adaptive direct search algorithm for granular and discrete variables. SIAM J. Optim. 29(2), 1164–1189 (2019)
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. CSUR 35(3), 268–308 (2003)
Conn, A., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization, vol. 8. SIAM, Philadelphia (2009)
Costa, A., Nannicini, G.: RBFOpt: an open-source library for black-box optimization with costly function evaluations. Math. Program. Comput. 10(4), 597–629 (2018). https://doi.org/10.1007/s12532-018-0144-7
Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)
Diniz-Ehrhardt, M., Martínez, J., Raydán, M.: A derivative-free nonmonotone line-search technique for unconstrained optimization. J. Comput. Appl. Math. 219(2), 383–397 (2008)
Fasano, G., Liuzzi, G., Lucidi, S., Rinaldi, F.: A linesearch-based derivative-free approach for nonsmooth constrained optimization. SIAM J. Optim. 24(3), 959–992 (2014)
García-Palomares, U.M., Rodríguez, J.F.: New sequential and parallel derivative-free algorithms for unconstrained minimization. SIAM J. Optim. 13(1), 79–96 (2002)
Gendreau, M., Potvin, J.Y.: Handbook of Metaheuristics, vol. 2. Springer, Berlin (2010)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co. Inc, Boston, MA (1989)
Grippo, L., Rinaldi, F.: A class of derivative-free nonmonotone optimization algorithms employing coordinate rotations and gradient approximations. Comput. Optim. Appl. 60(1), 1–33 (2015)
Halton, J.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)
Larson, J., Leyffer, S., Palkar, P., Wild, S.M.: A method for convex black-box integer global optimization. arXiv preprint arXiv:1903.11366 (2019)
Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw. 37(4), 44:1–44:15 (2011)
Le Digabel, S., Wild, S.M.: A taxonomy of constraints in simulation-based optimization. arXiv preprint arXiv:1505.07881 (2015)
Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free methods for bound constrained mixed-integer optimization. Comput. Optim. Appl. 53(2), 505–526 (2012)
Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free methods for mixed-integer constrained optimization problems. J. Optim. Theory Appl. 164(3), 933–965 (2015)
Liuzzi, G., Lucidi, S., Rinaldi, F.: DFLINT—an algorithm for black-box inequality and box constrained integer nonlinear programming problems (2020). https://doi.org/10.5281/zenodo.3653742. http://www.iasi.cnr.it/~liuzzi/DFL
Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 320–353. Springer, Boston, MA (2003). https://doi.org/10.1007/0-306-48056-5_11
Lucidi, S., Piccialli, V., Sciandrone, M.: An algorithm model for mixed variable programming. SIAM J. Optim. 15(4), 1057–1084 (2005)
Lukšan, V., Vlček, J.: Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical report VT798-00, Institute of Computer Science, Academy of Sciences of the Czech Republic (2000)
Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)
Moré, J., Wild, S.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009)
Müller, J.: MISO: mixed-integer surrogate optimization framework. Optim. Eng. 17(1), 177–203 (2016)
Müller, J., Shoemaker, C.A., Piché, R.: SO-MI: a surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems. Comput. Oper. Res. 40(5), 1383–1400 (2013)
Müller, J., Shoemaker, C.A., Piché, R.: SO-I: a surrogate model algorithm for expensive nonlinear integer programming problems including global optimization applications. J. Glob. Optim. 59(4), 865–889 (2014)
Newby, E., Ali, M.M.: A trust-region-based derivative free algorithm for mixed integer programming. Comput. Optim. Appl. 60(1), 199–229 (2015)
Porcelli, M., Toint, P.L.: BFO, a trainable derivative-free brute force optimizer for nonlinear bound-constrained optimization and equilibrium computations with continuous and discrete variables. ACM Trans. Math. Softw. 44(1), 1–25 (2017)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liuzzi, G., Lucidi, S. & Rinaldi, F. An algorithmic framework based on primitive directions and nonmonotone line searches for black-box optimization problems with integer variables. Math. Prog. Comp. 12, 673–702 (2020). https://doi.org/10.1007/s12532-020-00182-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12532-020-00182-7