Skip to main content
Log in

A Benders squared (\(B^2\)) framework for infinite-horizon stochastic linear programs

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

We propose a nested decomposition scheme for infinite-horizon stochastic linear programs. Our approach can be seen as a provably convergent extension of stochastic dual dynamic programming to the infinite-horizon setting: we explore a sequence of finite-horizon problems of increasing length until we can guarantee convergence with a given confidence level. The methodology alternates between a forward pass to explore sample paths and determine trial solutions, and a backward pass to generate a polyhedral approximation of the optimal value function by computing subgradients from the dual of the scenario subproblems. A computational study on a large set of randomly generated instances for two classes of problems shows that the proposed algorithm is able to effectively solve instances of moderate size to high precision, provided that the instance structure allows the construction of what we call constant-statepolicies with satisfactory objective function value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. To be precise, the value of the optimal policy for \(P_{T(\epsilon )}\) can be found by solving (VF-L0-0), the remaining problems (VF-Lt-j) are used to identify the optimal policy.

  2. In this proof, an iteration is an execution of a forward pass and a backward pass on a sample path; this allows us a few simplifications when adapting parts of [14] to our setting.

  3. Recall that our iterations include a full backward pass; hence they include the steps between \(k\tau \) and \((k+1)\tau -1\) in [14].

References

  1. https://zenodo.org/badge/latestdoi/303421598

  2. Asamov, T., Powell, W.B.: Regularized decomposition of high-dimensional multistage stochastic programs with markov uncertainty. SIAM J. Optim. 28(1), 575–595 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton, NJ (1957)

    MATH  Google Scholar 

  4. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA (1995)

    MATH  Google Scholar 

  5. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific, Belmont (1997)

    Google Scholar 

  6. Birge, J.R.: Decomposition and partitioning methods for multistage stochastic linear programs. Oper. Res. 33(5), 989–1007 (1985)

    Article  MathSciNet  Google Scholar 

  7. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer Science & Business Media, Berlin (2011)

    Book  Google Scholar 

  8. Birge, J.R., Louveaux, F.V.: A multicut algorithm for two-stage stochastic linear programs. Eur. J. Oper. Res. 34(3), 384–392 (1988)

    Article  MathSciNet  Google Scholar 

  9. de Matos, V.L., Philpott, A.B., Finardi, E.C.: Improving the performance of stochastic dual dynamic programming. J. Comput. Appl. Math. 290, 196–208 (2015)

    Article  MathSciNet  Google Scholar 

  10. Donohue, C., Birge, J.R.: The abridged nested decomposition method for multistage stochastic linear programs with relatively complete recourse. Algorithm. Oper. Res. 1(1), (2006)

  11. Duffin, R.J., Karlovitz, L.A.: An infinite linear program with a duality gap. Manage. Sci. 12(1), 122–134 (1965)

    Article  MathSciNet  Google Scholar 

  12. Gassmann, H.I.: Mslip: A computer code for the multistage stochastic linear programming problem. Math. Program. 47(1), 407–423 (1990)

    Article  MathSciNet  Google Scholar 

  13. Ghate, A., Smith, R.: Optimal backlogging over an infinite horizon under time-varying convex production and inventory costs. Manuf. Serv. Oper. Manag. 11(2), 362–368 (2009)

    Article  Google Scholar 

  14. Girardeau, P., Leclere, V., Philpott, A.B.: On the convergence of decomposition methods for multistage stochastic convex programs. Math. Oper. Res. 40(1), 130–145 (2014)

    Article  MathSciNet  Google Scholar 

  15. Grinold, R.C.: Finite horizon approximations of infinite horizon linear programs. Math. Program. 12(1), 1–17 (1977)

    Article  MathSciNet  Google Scholar 

  16. Guigues, V.: SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning. Comput. Optim. Appl. 57(1), 167–203 (2014)

    Article  MathSciNet  Google Scholar 

  17. Heitsch, H., Römisch, W.: Scenario tree modeling for multistage stochastic programs. Math. Program. 118(2), 371–406 (2009)

    Article  MathSciNet  Google Scholar 

  18. Infanger, G., Morton, D.P.: Cut sharing for multistage stochastic linear programs with interstage dependency. Math. Program. 75(2), 241–256 (1996)

    Article  MathSciNet  Google Scholar 

  19. Kelley, J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960)

    Article  MathSciNet  Google Scholar 

  20. Kim, K., Mehrotra, S.: A two-stage stochastic integer programming approach to integrated staffing and scheduling with application to nurse management. Oper. Res. 63(6), 1431–1451 (2015)

    Article  MathSciNet  Google Scholar 

  21. Laporte, G., Meunier, F., Wolfler Calvo, R.: Shared mobility systems. 4OR 13(4), 341–360 (2015)

  22. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York, NY (1990)

    MATH  Google Scholar 

  23. Mulvey, J.M., Vladimirou, H.: Solving multistage stochastic networks: an application of scenario aggregation. Networks 21(6), 619–643 (1991)

    Article  MathSciNet  Google Scholar 

  24. Mulvey, J.M., Vladimirou, H.: Stochastic network programming for financial planning problems. Manage. Sci. 38(11), 1642–1664 (1992)

    Article  Google Scholar 

  25. Pereira, M., Pinto, L.: Multi-stage stochastic optimization applied to energy planning. Math. Program. 52(1–3), 359–375 (1991)

    Article  MathSciNet  Google Scholar 

  26. Pfeiffer, L., Apparigliato, R., Auchapt, S.: Two methods of pruning Benders’ cuts and their application to the management of a gas portfolio. Tech. Rep. 8133, INRIA (2012)

  27. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimensionality, 2nd edn. Wiley, New York (2011)

    Book  Google Scholar 

  28. Romeijn, E.H., Smith, R.L., Bean, J.C.: Duality in infinite dimensional linear programming. Math. Program. 53(1–3), 79–97 (1992)

    Article  MathSciNet  Google Scholar 

  29. Schochetman, I.E., Smith, R.L.: Finite dimensional approximation in infinite dimensional mathematical programming. Math. Program. 54(1–3), 307–333 (1992)

    Article  MathSciNet  Google Scholar 

  30. Shapiro, A.: Analysis of stochastic dual dynamic programming method. Eur. J. Oper. Res. 209(1), 63–72 (2011)

    Article  MathSciNet  Google Scholar 

  31. Van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17(4), 638–663 (1969)

    Article  MathSciNet  Google Scholar 

  32. Zenios, S.A.: Financial Optimization. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  33. Zhang, W.: Water Network Design and Management via Stochastic Programming. The University of Arizona, Arizona (2013)

    Google Scholar 

  34. Zou, J., Ahmed, S., Sun, X.A.: Nested decomposition of multistage stochastic integer programs with binary state variables. Tech. rep., Georgia Institute of Technology (2016). http://www.optimization-online.org/DB_HTML/2016/05/5436.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Traversi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A computational tests with different values of \(\delta \)

A computational tests with different values of \(\delta \)

In Table 5 we show the details about the computation times of the different algorithms when \(\delta \) increases.

Table 5 Extended results concerning the average CPU times for the three algorithms on the production planning with backlog problem

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nannicini, G., Traversi, E. & Calvo, R.W. A Benders squared (\(B^2\)) framework for infinite-horizon stochastic linear programs. Math. Prog. Comp. 13, 645–681 (2021). https://doi.org/10.1007/s12532-020-00195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-020-00195-2

Keywords

Mathematics Subject Classification

Navigation