Skip to main content
Log in

Mixed integer bilevel optimization with a k-optimal follower: a hierarchy of bounds

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

We consider mixed integer bilevel linear optimization problems in which the decision variables of the lower-level (follower’s) problem are all binary. We propose a general modeling and solution framework motivated by the practical reality that in a Stackelberg game, the follower does not always solve their optimization problem to optimality. They may instead implement a locally optimal solution with respect to a given upper-level decision. Such scenarios may occur when the follower’s computational capabilities are limited, or when the follower is not completely rational. Our framework relaxes the typical assumption of perfect rationality that underlies the standard modeling framework by defining a hierarchy of increasingly stringent assumptions about the behavior of the follower. Namely, at level k of this hierarchy, it is assumed that the follower produces a k-optimal solution. Associated with this hierarchy is a hierarchy of upper and lower bounds that are in fact valid for the classical case in which complete rationality of the follower is assumed. Two mixed integer linear programming (MILP) formulations are derived for the resulting optimization problems. Extensive computational results are provided to demonstrate the effectiveness of the proposed MILP formulations and the quality of the bounds produced. The latter are shown to dominate the standard approach based on a single-level relaxation at a reasonable computational cost. Finally, we also explore a class of bilevel problems for which 2-optimal lower-level solutions imply global optimality, and hence we can solve these bilevel problems exactly using the developed MILP formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

The data used during this study are publicly available with doi 10.5281/zenodo.6972912 at https://github.com/xyshi25/BilevelBounds

Code availability statement

The code used during this study are publicly available with doi 10.5281/zenodo.6972912 at https://github.com/xyshi25/BilevelBounds

References

  1. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  3. Moore, J.T., Bard, J.F.: The mixed integer linear bilevel programming problem. Oper. Res. 38(5), 911–921 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lozano, L., Smith, J.C.: A value-function-based exact approach for the bilevel mixed-integer programming problem. Oper. Res. 65(3), 768–786 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tahernejad, S., Ralphs, T.K., DeNegre, S.T.: A branch-and-cut algorithm for mixed integer bilevel linear optimization problems and its implementation. Math. Program. Comput. 12(4), 529–568 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, L., Xu, P.: The watermelon algorithm for the bilevel integer linear programming problem. SIAM J. Optim. 27(3), 1403–1430 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: Interdiction games and monotonicity, with application to knapsack problems. INFORMS J. Comput. 31(2), 390–410 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: On the use of intersection cuts for bilevel optimization. Math. Program. 172(1–2), 77–103 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276–295 (2017)

    Article  Google Scholar 

  10. Vicente, L., Savard, G., Judice, J.: Discrete linear bilevel programming problem. J. Optim. Theory Appl. 89(3), 597–614 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Borrero, J.S., Prokopyev, O.A., Sauré, D.: Sequential interdiction with incomplete information and learning. Oper. Res. 67(1), 72–89 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Negre, S.: Interdiction and discrete bilevel linear programming. Ph.D. thesis, Lehigh University (2011)

  13. Israeli, E., Wood, R.K.: Shortest-path network interdiction. Netw. Int. J. 40(2), 97–111 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Brotcorne, L., Labbé, M., Marcotte, P., Savard, G.: A bilevel model for toll optimization on a multicommodity transportation network. Transp. Sci. 35(4), 345–358 (2001)

    Article  MATH  Google Scholar 

  15. Labbé, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application to optimal highway pricing. Manag. Sci. 44(12–part–1), 1608–1622 (1998)

    Article  MATH  Google Scholar 

  16. Beheshti, B., Prokopyev, O.A., Pasiliao, E.L.: Exact solution approaches for bilevel assignment problems. Comput. Optim. Appl. 64(1), 215–242 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, Z., Wu, J., Sun, H.: Solution algorithm for the bi-level discrete network design problem. Transport. Res. Part B Methodol. 39(6), 479–495 (2005)

    Article  Google Scholar 

  18. Xu, H., Zhang, Y., Cassandras, C.G., Li, L., Feng, S.: A bi-level cooperative driving strategy allowing lane changes. arXiv preprint arXiv:1912.11495 (2019). https://arxiv.org/abs/1912.11495. Accessed 9 Apr 2020

  19. Audet, C., Hansen, P., Jaumard, B., Savard, G.: Links between linear bilevel and mixed 0–1 programming problems. J. Optim. Theory Appl. 93(2), 273–300 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zare, M.H., Borrero, J.S., Zeng, B., Prokopyev, O.A.: A note on linearized reformulations for a class of bilevel linear integer problems. Ann. Oper. Res. 272(1–2), 99–117 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zeng, B., An, Y.: Solving bilevel mixed integer program by reformulations and decomposition. Optimization online (2014). http://www.optimization-online.org/DB_FILE/2014/07/4455.pdf. Accessed 9 Apr 2020

  22. Tahernejad, S., Ralphs, T.K.: Valid inequalities for mixed integer bilevel optimization problems. COR@L Laboratory Report 20T-013 (2020). https://coral.ise.lehigh.edu/~ted/files/papers/MibSCuts20. Accessed 7 June 2021

  23. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.J.: Bilevel knapsack with interdiction constraints. INFORMS J. Comput. 28(2), 319–333 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. IBM: ILOG CPLEX Optimization Studio (12.8) (2017). https://www.ibm.com/products/ilog-cplex-optimization-studio. Accessed 9 Apr 2020

  25. Tang, Y., Richard, J.P.P., Smith, J.C.: A class of algorithms for mixed-integer bilevel min-max optimization. J. Global Optim. 66(2), 225–262 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Della Croce, F., Scatamacchia, R.: An exact approach for the bilevel knapsack problem with interdiction constraints and extensions. Math. Program. (to appear) (2020)

  27. Hamming, R.W.: Coding and Information Theory. Prentice-Hall Inc. (1986)

    MATH  Google Scholar 

  28. Aarts, E., Aarts, E.H., Lenstra, J.K.: Local Search in Combinatorial Optimization. Princeton University Press, Princeton (2003)

    Book  MATH  Google Scholar 

  29. Chandra, B., Karloff, H., Tovey, C.: New results on the old k-opt algorithm for the traveling salesman problem. SIAM J. Comput. 28(6), 1998–2029 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations, vol. 12. Kluwer Academic Publishers, New York (2004)

    MATH  Google Scholar 

  31. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part I: route construction and local search algorithms. Transp. Sci. 39(1), 104–118 (2005)

    Article  Google Scholar 

  32. Psaraftis, H.N.: k-interchange procedures for local search in a precedence-constrained routing problem. Eur. J. Oper. Res. 13(4), 391–402 (1983)

    Article  MATH  Google Scholar 

  33. Savelsbergh, M.W.: Local search in routing problems with time windows. Ann. Oper. Res. 4(1), 285–305 (1985)

    Article  MathSciNet  Google Scholar 

  34. Katayama, K., Hamamoto, A., Narihisa, H.: An effective local search for the maximum clique problem. Inf. Process. Lett. 95(5), 503–511 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)

    Article  MATH  Google Scholar 

  36. Maheswaran, R.T., Pearce, J.P., Tambe, M.: Distributed algorithms for dcop: a graphical-game-based approach. In: ISCA PDCS, pp. 432–439 (2004)

  37. Schäffer, A.A.: Simple local search problems that are hard to solve. SIAM J. Comput. 20(1), 56–87 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.: The mixed vertex packing problem. Math. Program. 89(1), 35–53 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90(3), 429–457 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhao, M., Huang, K., Zeng, B.: A polyhedral study on chance constrained program with random right-hand side. Math. Program. 166(1–2), 19–64 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Smith, J.C., Lim, C., Sudargho, F.: Survivable network design under optimal and heuristic interdiction scenarios. J. Global Optim. 38(2), 181–199 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zare, M.H., Prokopyev, O.A., Sauré, D.: On bilevel optimization with inexact follower. Decis. Anal. 17(1), 74–95 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jeroslow, R.G.: The polynomial hierarchy and a simple model for competitive analysis. Math. Program. 32(2), 146–164 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lodi, A., Ralphs, T.K., Woeginger, G.J.: Bilevel programming and the separation problem. Math. Program. 146(1–2), 437–458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Horst, R., Pardalos, P.M., Van Thoai, N.: Introduction to Global Optimization. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  46. Luedtke, J., Ahmed, S., Nemhauser, G.L.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 122(2), 247–272 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lee, J., Ryan, J.: Matroid applications and algorithms. ORSA J. Comput. 4(1), 70–98 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Courier Corporation, New York (2001)

    MATH  Google Scholar 

  49. Oxley, J.: What is a matroid. Cubo 5, 179–218 (2003)

    MathSciNet  MATH  Google Scholar 

  50. White, N., White, N.M.: Matroid Applications, vol. 40. Cambridge University Press (1992)

    Book  MATH  Google Scholar 

  51. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.J.: A study on the computational complexity of the bilevel knapsack problem. SIAM J. Optim. 24(2), 823–838 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ahuja, R.K., Magnanti, T.L., Orlin, J.B., Reddy, M.: Applications of network optimization. In: Ball, M., Magnanti, T., Monma, C., Nemhauser, G. (eds.) Handbooks in Operations Research and Management Science, vol. 7, pp. 1–83. Elsevier, Amsterdam (1995)

    Google Scholar 

  53. Frederickson, G.N., Solis-Oba, R.: Increasing the weight of minimum spanning trees. J. Algorithms 33(2), 244–266 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  54. Shi, X., Zeng, B., Prokopyev, O.A.: On bilevel minimum and bottleneck spanning tree problems. Networks 74(3), 251–273 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wei, N., Walteros, J.L., Pajouh, F.M.: Integer programming formulations for minimum spanning tree interdiction. Optimization online (2019). http://www.optimization-online.org/DB_FILE/2019/08/7325.pdf. Acessed 9 April 2020

  56. Kis, T., Kovács, A.: On bilevel machine scheduling problems. OR Spectrum 34(1), 43–68 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for the 0–1 knapsack problem. Manag. Sci. 45(3), 414–424 (1999)

    Article  MATH  Google Scholar 

  58. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (2002)

    MATH  Google Scholar 

  59. Bazgan, C., Toubaline, S., Tuza, Z.: The most vital nodes with respect to independent set and vertex cover. Discrete Appl. Math. 159(17), 1933–1946 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. Leskovec, J., Sosič, R.: Snap: a general-purpose network analysis and graph-mining library. ACM Trans. Intell. Syst. Technol. 8(1), 1 (2016)

    Article  Google Scholar 

  61. Magnanti, T.L., Wolsey, L.A.: Optimal trees. In: Ball, M., Magnanti, T., Monma, C., Nemhauser, G. (eds.) Network Models, Handbooks in Operations Research and Management Science, vol. 7, pp. 503–615. Elsevier (1995)

    Google Scholar 

  62. Koch, T., Martin, A., Voß, S.: Steinlib: an updated library on steiner tree problems in graphs. In: Cheng, X.Z., Du, D.Z. (eds.) Steiner Trees in Industry, pp. 285–325. Springer, Boston (2001)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Review Team for their helpful and constructive comments.

Funding

This research is based upon work supported by the Office of Naval Research [Grant N00014-19-1-2330].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted K. Ralphs.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Prokopyev, O.A. & Ralphs, T.K. Mixed integer bilevel optimization with a k-optimal follower: a hierarchy of bounds. Math. Prog. Comp. 15, 1–51 (2023). https://doi.org/10.1007/s12532-022-00227-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-022-00227-z

Mathematics Subject Classification

Navigation