Skip to main content
Log in

A Consequence of Failed Sequential Learning: A Computational Account of Developmental Amnesia

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Developmental amnesia, featured with severely impaired episodic memory and almost normal semantic memory, has been discovered to occur in children with hippocampal atrophy. Such amnesia seems to challenge the understanding that early loss of episodic memory may impede cognitive development and result in severe mental retardation. While the underlying mechanism is still unclear, no computational model has been reported to simulate developmental amnesia. A cognitive and computational system is presented, for the first time, to simulate the unique characteristics of the amnesia: impaired episodic recall, spared recognition, and spared semantic learning. The lesioned sequential/spatial learning ability of the hippocampus is suggested to be able to cause severe impairment of episodic recall, but affect neither recognition ability nor semantic learning. Semantic learning is generally thought to largely associate with the consolidation of episodic memory, a process in which sequential activation of episodic memory may not be necessary. Semantic learning through memory consolidation featured with random activation of stored experiences is performed, and the acquired knowledge is demonstrated to have the flexibility that is one of the key characteristics of semantic memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tulving E. Episodic and semantic memory. In: Tulving E, Donaldson W, editors. Organization of memory. New York: Academic Press; 1972. p. 381–403.

    Google Scholar 

  2. Aggleton JP, Brown MW. Episodic memory, amnesia and the hippocampal–anterior thalamic axis. Behav Brain Sci. 1999;22:425–89.

    PubMed  CAS  Google Scholar 

  3. Eichenbaum H. The hippocampal system and declarative memory in animals. J Cogn Neurosci. 1992;4:217–31.

    Article  Google Scholar 

  4. Hodges JR, Carpenter K. Anterograde amnesia with fornix damage following removal of IIIrd ventricle colloid cyst. J Neurol Neurosurg Psychiatry. 1991;54:633–8.

    Article  PubMed  CAS  Google Scholar 

  5. Zola SM, Squire LR, Amaral D. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986;6:2950–67.

    Google Scholar 

  6. Eichenbaum H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron. 2004;44:109–20.

    Article  PubMed  CAS  Google Scholar 

  7. Gluck MA, Myers CE. Hippocampal mediation of stimulus representation: a computational theory. Hippocampus. 1993;3:491–516.

    Article  PubMed  CAS  Google Scholar 

  8. Hasselmo ME, Wyble BP, Wallenstein GV. Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus. 1996;6:693–708.

    Article  PubMed  CAS  Google Scholar 

  9. Milner PM. A cell assembly theory of hippocampal amnesia. Neuropsychologia. 1989;6:215–34.

    Article  Google Scholar 

  10. Nadel L, Samsonovich A, Ryan L, Moscovitch M. Multiple trace theory of human memory: computational, neuroimaging, and neuropsychological results. Hippocampus. 2000;10:352–68.

    Article  PubMed  CAS  Google Scholar 

  11. Squire LR, Cohen NJ, Nadel L. The medial temporal region and memory consolidation: a new hypothesis. In: Weingarter H, Parker E, editors. Memory consolidation. Hillsdale: Lawrence Erlbaum; 1984. p. 185–210.

    Google Scholar 

  12. Treves A, Rolls E. Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus. 1992;2:189–200.

    Article  PubMed  CAS  Google Scholar 

  13. Alvarez P, Squire L. Memory consolidation and the medial temporal lobe: a simple network model. Proc Natl Acad Sci USA. 1994;91:7041–5.

    Article  PubMed  CAS  Google Scholar 

  14. McClelland JL, McNaughton BL, O’Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev. 1995;102:419–57.

    Article  PubMed  CAS  Google Scholar 

  15. Meeter M, Murre JMJ. Tracelink: a model of consolidation and amnesia. Cogn Neuropsychol. 2005;22:559–87.

    Article  Google Scholar 

  16. Murre JM. TraceLink: a model of amnesia and consolidation of memory. Hippocampus. 1996;6:675–84.

    Article  PubMed  CAS  Google Scholar 

  17. O’Reilly RC, Rudy JW. Computational principles of learning in the neocortex and hippocampus. Hippocampus. 2000;10:389–97.

    Article  PubMed  Google Scholar 

  18. Gabrieli JDE, Cohen NJ, Corkin S. The impaired learning of semantic knowledge following bilateral medial temporal-lobe resection. Brain Cogn. 1988;7:151–77.

    Article  Google Scholar 

  19. Postle BR, Corkin S. Impaired word-stem completion priming but intact perceptual identification priming with novel words: evidence from the amnesic patient H.M. Neuropsychologia. 1998;36:421–40.

    Article  PubMed  CAS  Google Scholar 

  20. Vargha-Khadem F, Gadian DG, Watkins KE, Connelly A, Van Paesschen W, Mishkin M. Differential effects of early hippocampal pathology on episodic and semantic memory. Science. 1997;277:376–80.

    Article  PubMed  CAS  Google Scholar 

  21. Baddeley AD, Vargha-Khadem F, Mishkin M. Preserved recognition in a case of developmental amnesia: implications for the acquisition of semantic memory. J Cogn Neurosci. 2001;13:357–69.

    Article  PubMed  CAS  Google Scholar 

  22. Isaacs EB, Vargha-Khadem F, Watkins KE, Lucas A, Mishkin M, Gadian DG. Developmental amnesia and its relationship to degree of hippocampal atrophy. Proc Natl Acad Sci USA. 2003;100:13060–3.

    Article  PubMed  CAS  Google Scholar 

  23. Squire LR, Zola SM. Episodic memory, semantic memory, and amnesia. Hippocampus. 1998;8:205–11.

    Article  PubMed  CAS  Google Scholar 

  24. Manns JR, Squire LR. Impaired recognition memory on the doors and people test after damage limited to the hippocampal region. Hippocampus. 1999;9:495–9.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang Q. An artificial intelligent counter. Cogn Syst Res. 2005;6:320–32.

    Article  Google Scholar 

  26. Zhang Q. A computational account of dreaming: learning and memory consolidation. Cogn Syst Res. 2009;10:91–101.

    Article  Google Scholar 

  27. Harnad S. The symbol grounding problem. Physica D. 1990;42:335–46.

    Article  Google Scholar 

  28. Smolensky P. Connectionist modeling: neural computation & mental connections. In: Haugeland J, editor. Mind design II. London: MIT Press; 1997. p. 233–50.

    Google Scholar 

  29. Forster KI. Computational modeling and elementary process analysis in visual word recognition. J Exp Psychol Hum Percept Perform. 1994;20:1292–310.

    Article  PubMed  CAS  Google Scholar 

  30. Myers RE, Sperry RW. Interocular transfer of a visual forma discrimination habit in cats after section of the optic chaism and corpus callosum. Anat Rec. 1953;115:351–2.

    Google Scholar 

  31. Sperry R. Some effects of disconnecting the cerebral hemispheres. Science. 1982;217:1223–6.

    Article  PubMed  CAS  Google Scholar 

  32. Lynch MA. Long-term potentiation and memory. Physiol Rev. 2004;84:87–136.

    Article  PubMed  CAS  Google Scholar 

  33. Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232:331–56.

    PubMed  CAS  Google Scholar 

  34. Impey S, Obrietan K, Wong ST, Poser S, Yano S, Wayman G, et al. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron. 1998;21:869–83.

    Article  PubMed  CAS  Google Scholar 

  35. Segal M, Murphy DD. CREB activation mediates plasticity in cultured hippocampal neurons. Neural Plast. 1998;6:1–7.

    Article  PubMed  CAS  Google Scholar 

  36. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20:11–21.

    Article  PubMed  CAS  Google Scholar 

  37. Corkin S. What’s new with the amnesic patient H.M.? Nat Rev Neurosci. 2002;3:153–60.

    Article  PubMed  CAS  Google Scholar 

  38. Hobson JA, McCarley RW. The brain as a dream-state generator: an activation-synthesis hypothesis of the dream process. Am J Psychiatry. 1977;134:1335–48.

    PubMed  CAS  Google Scholar 

  39. Levy WB. A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus. 1996;6:579–90.

    Article  PubMed  CAS  Google Scholar 

  40. Granger R, Wiebe SP, Taketani M, Lynch G. Distinct memory circuits composing the hippocampal region. Hippocampus. 1996;6:567–78.

    Article  PubMed  CAS  Google Scholar 

  41. Wallenstein GV, Eichenbaum HB, Hasselmo ME. The hippocampus as an associator of discontiguous events. Trends Neurosci. 1998;21:317–23.

    Article  PubMed  CAS  Google Scholar 

  42. Burgess N, Recce M, O’Keefe J. A model of hippocampal function. Neural Netw. 1994;17:1065–81.

    Article  Google Scholar 

  43. Levy WB. A computational approach to hippocampal function. In: Hawkins RD, Bower GH, editors. Computational models of learning in simple neural systems. Orlando: Academic Press; 1989. p. 243–305.

    Chapter  Google Scholar 

  44. McNaughton BL, Morris RGM. Hippocampal synaptic enhancement and information storage. Trends Neurosci. 1987;10:408–15.

    Article  Google Scholar 

  45. Sharp P. Computer simulation of hippocampal place cells. Psychobiology. 1991;19:103–15.

    Google Scholar 

  46. Gluck MA, Meeter M, Myers CE. Computational models of the hippocampal region: linking incremental learning and episodic memory. Trends Cogn Neurosci. 2003;7:269–76.

    Article  Google Scholar 

  47. O’Kane G, Kensinger EA, Corkin S. Evidence for semantic learning in profound amnesia: an investigation with patient H.M. Hippocampus. 2004;14:417–25.

    Article  PubMed  Google Scholar 

  48. Halgren E. Human hippocampal and amygdala recording and stimulation: evidence for a neural model of recent memory. In: Squire LR, Butters N, editors. The neuropsychology of memory. New York: Guilford; 1984. p. 165–81.

    Google Scholar 

  49. Teyler TJ, DiScenna P. The hippocampal memory indexing theory. Behav Neurosci. 1986;100:147–54.

    Article  PubMed  CAS  Google Scholar 

  50. Squire LR, Alvarez P. Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr Opin Neurobiol. 1995;5:169–77.

    Article  PubMed  CAS  Google Scholar 

  51. Pavlides C, Winson J. Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J Neurosci. 1989;9:2907–18.

    PubMed  CAS  Google Scholar 

  52. Staba RJ, Wilson CL, Fried I, Engel JJ. Single neuron burst firing in the human hippocampus during sleep. Hippocampus. 2002;12:724–34.

    Article  PubMed  Google Scholar 

  53. Kim JJ, Fanselow MS. Modality-specific retrograde amnesia of fear. Science. 1992;256:675–7.

    Article  PubMed  CAS  Google Scholar 

  54. Holdstock JS, Mayes AR, Roberts N, Cezayirli E, Isaac CL, O’Reilly RC, et al. Under what conditions is recognition spared relative to recall after selective hippocampal damage in humans? Hippocampus. 2002;12:341–51.

    Article  PubMed  CAS  Google Scholar 

  55. Vargha-Khadem F, Salmond CH, Watkins KE, Friston KJ, Gadian DG, Mishkin M. Developmental amnesia: effect of age at injury. Proc Natl Acad Sci USA. 2003;100:10055–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q. A Consequence of Failed Sequential Learning: A Computational Account of Developmental Amnesia. Cogn Comput 1, 244–256 (2009). https://doi.org/10.1007/s12559-009-9023-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-009-9023-x

Keywords

Navigation