Skip to main content
Log in

A Video Quality Assessment Metric Based on Human Visual System

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

It is important for practical application to design an effective and efficient metric for video quality. The most reliable way is by subjective evaluation. Thus, to design an objective metric by simulating human visual system (HVS) is quite reasonable and available. In this paper, the video quality assessment metric based on visual perception is proposed. Three-dimensional wavelet is utilized to decompose video and then extract features to mimic the multichannel structure of HVS. Spatio-temporal contrast sensitivity function (S-T CSF) is employed to weight coefficient obtained by three-dimensional wavelet to simulate nonlinearity feature of the human eyes. Perceptual threshold is exploited to obtain visual sensitive coefficients after S-T CSF filtered. Visual sensitive coefficients are normalized representation and then visual sensitive errors are calculated between reference and distorted video. Finally, temporal perceptual mechanism is applied to count values of video quality for reducing computational cost. Experimental results prove the proposed method outperforms the most existing methods and is comparable to LHS and PVQM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang Z, Sheikh RH, Bovik CA. Objective video quality assessment. In: Furht B, Marques O, editors. The handbook of video databases: design and applications. Florida: CRC Press; 2003. p. 1041–78.

    Google Scholar 

  2. ITU-R BT.500-11. Methodology for the subjective assessment of the quality of television pictures. 2002.

  3. Wang Z, Bovik CA. Modern image quality assessment. New York: Morgan and Claypool Publishing Company; 2006.

    Google Scholar 

  4. Yuan Y, Evans A, Monro D. Low complexity separable matching pursuits. IEEE Int Conf Acoust Speech Signal Process. 2004;3(17–21):725–8.

    Google Scholar 

  5. Yuan Y, Monro D. Improved matching pursuits image coding. IEEE Int Conf Acoust Speech Signal Process. 2005;2:201–4.

    Google Scholar 

  6. Monro D, Yuan Y. Bases for low complexity matching pursuits image coding. IEEE Int Conf Image Process. 2005;2(11–14):249–52.

    Google Scholar 

  7. Yuan Y, Monro D. 3D wavelet video coding with replicated matching pursuits. IEEE Int Conf Image Process. 2005;1(11–14):69–72.

    Google Scholar 

  8. Li X, Tao D, Gao X, Lu W. A natural image quality evaluation metric. Signal Process. 2009;89(4):548–55.

    Article  Google Scholar 

  9. ATIS Technical Report T1.TR.PP.74, Objective video quality measurement using a peak-signal-to-noise-ratio (PSNR) full reference technique. 2001.

  10. Sarnoff Corporation, J. Lubin. Sarnoff JND Vision Model. Contribution to IEEE G-2.1.6 compression and processing subcommittee. 1997.

  11. Winkler S. A perceptual distortion metric for digital color video. In Proc SPIE, 3644: 175–184, San Jose, CA, Jan. 23–29, 1999.

  12. Watson AB, Hu J, McGowan JF. DVQ: a digital video quality metric based on human vision. J Electron Imag. 2001;10(1):20–9.

    Article  Google Scholar 

  13. Hekstra AP, Beerends JG, Ledermann D, de Caluwe FE, Kohler S, Koenen RH, Rihs S, Ehrsam M, Schlauss D. PVQM—a perceptual video quality measure. Signal Process Image Commun. 2002;17(10):781–98.

    Article  Google Scholar 

  14. VQEG. Final report from the video quality experts group on the validation of objective models of video quality assessment, phase I VQEG. 2000. 2000Available: http://www.vqeg.org/.

  15. Wang Z, Lu L, Bovik AC. Video quality assessment based on structural distortion measurement. Signal Process Image Commun. 2004;19(2):121–32.

    Article  Google Scholar 

  16. Mei T, Hua X-S, Zhu C-Z, Zhou H-Q, Li S. Home video visual quality assessment with spatio-temporal factors. IEEE Trans Circuits Syst Video Technol. 2007;17(6):699–706.

    Article  Google Scholar 

  17. Lu Z, Lin W, Yang Xiaokang, Ong EP, Yao S. Modeling visual attention’s modulatory aftereffects on visual sensitivity and quality evaluation. IEEE Trans Image Process. 2009;14(11):1928–42.

    Google Scholar 

  18. Wang Z, Li Q. Video quality assessment using a statistical model of human visual speed perception. J Opt Soc Am A. 2007;24(12):B61–9.

    Article  Google Scholar 

  19. Wandell BA. Foundations of vision. Sinauer Associates. 1995.

  20. Moyano E, Quiles FJ, Garrido A, Orozco-Barbosa L, Duato J. Efficient 3-D wavelet transform decomposition for video compression. International Workshop on Digital and Computational Video, 118–125, Feb. 2001.

  21. Wang C, Ma K-L. A statistical approach to volume data quality assessment. IEEE Trans Vis Comput Graphics. 2008;14(3):590–602.

    Article  Google Scholar 

  22. Mallat SG. A theory for multiresolution decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell. 1989;11(7):674–93.

    Article  Google Scholar 

  23. Kelly DH. Motion and vision II. Stabilized spatio-temporal surface. J Opt Soc Am. 1979;69(10):1340–9.

    Article  CAS  PubMed  Google Scholar 

  24. Jia Y, Lin W, Kassim AA. Estimating just-noticeable distortion for video. IEEE Trans Circuits Syst Video Technol. 2006;16(7):820–9.

    Article  Google Scholar 

  25. Narita N. Subjective-evaluation method for quality of coded images. IEEE Trans Broadcasting. 1994;40(1):7–13.

    Article  Google Scholar 

  26. Tan KT, Ghanbari M, Pearson DE. An objective measurement tool for MPEG video quality. Signal Process. 1998;70(3):279–94.

    Article  Google Scholar 

  27. Ninassi A, Meur OL, Callet PL, Barba D. Considering temporal variations of spatial visual distortions in video quality assessment. IEEE J Sel Topics Signal Process. 2009;3(2):253–65.

    Article  Google Scholar 

  28. Winkler S. A perceputal distortion metric for digital color video IV. Proc SPIE Human Vis Electron Imag. 1999;3644:175–84.

    Article  Google Scholar 

  29. Van den Branden Lambrecht CJ. A working spatio-temporal model of the human visual system for image restoration and quality assessment applications. Proc IEEE Int Conf Acoust Speech Signal Process. 1996;4:2291–4.

    Article  Google Scholar 

  30. Masry M, Hemami SS, Yegnaswamy S. A scalable waveletbased video distortion metric and applications. IEEE Trans Circuits Syst Video Technol. 2006;16(2):260–73.

    Article  Google Scholar 

  31. Chou C-H, Chen C-W. A perceptually optimized 3-D subband codec for video communication over wireless channels. IEEE Trans Circuits Syst Video Technol. 1996;6(2):143–56.

    Article  Google Scholar 

  32. Ong E, Lin W, Lu Z, Yao S, Etoh M. Visual distortion assessment with emphasis on spatially transitional regions. IEEE Trans Circuits Syst Video Technol. 2004;14(4):559–66.

    Article  Google Scholar 

  33. Gunawan IP, Ghanbari M. Reduced-reference video quality assessment using discriminative local harmonic strength with motion consideration. IEEE Trans Circuits Syst Video Technol. 2008;18(1):71–83.

    Article  Google Scholar 

  34. Pan Q, Zhang L, Dai G, Zhang H. Two de-noising methods by wavelet transform. IEEE Trans Signal Process. 1999;47(12):3401–6.

    Article  Google Scholar 

  35. Zhang L, Paul B, Wu X. Multiscale LMMSE-based image denoising with optimal wavelet selection. IEEE Trans Circuits Syst Video Technol. 2005;15(4):469–81.

    Article  Google Scholar 

  36. Gao X, Lu W, Tao D, Li X. Image quality assessment based on multiscale geometric analysis. IEEE Trans Image Process. 2009;18(7):1409–23.

    Article  PubMed  Google Scholar 

  37. Lu W, Zeng K, Tao D, Yuan Y, Gao X. No-reference image quality assessment in contourlet domain. Neurocomputing. 2010;73(1):784–94.

    Article  Google Scholar 

  38. Li X, Lin S, Yan S, Xu D. Discriminant locally linear embedding with high-order tensor data. IEEE Trans Syst Man Cybern Part B. 2008;38(2):342–52.

    Article  Google Scholar 

  39. Tao D, Li X, Wu X, Maybank SJ. General tensor discriminant analysis and Gabor features for gait recognition. IEEE Trans Pattern Anal Mach Intell. 2007;29(10):1700–15.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We want to thank the helpful comments and suggestions from the anonymous reviewers. This research was supported by the National Natural Science Foundation of China (60771068, 60702061, 60832005), the Ph.D. Programs Foundation of Ministry of Education of China (No. 20090203110002), the Natural Science Basic Research Plane in Shaanxi Province of China (2009JM8004), the Open Project Program of the National Laboratory of Pattern Recognition (NLPR) in China and the National Laboratory of Automatic Target Recognition, Shenzhen University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, W., Li, X., Gao, X. et al. A Video Quality Assessment Metric Based on Human Visual System. Cogn Comput 2, 120–131 (2010). https://doi.org/10.1007/s12559-010-9040-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-010-9040-9

Keywords

Navigation