Abstract
This work discusses a new approach for ataxia SCA-2 diagnosis based on the application of independent component analysis to the data obtained by electro-oculography in several experiments carried out over healthy and sick subjects. Abnormalities in the oculomotor system are well-known clinical symptoms in patients of several neurodegenerative diseases, including modifications in latency, peak velocity, and deviation in saccadic movements, causing changes in the waveform of the patient response. The changes in the morphology waveform suggest a higher degree of statistic independence in sick patients when compared to healthy individuals regarding the patient response to the visual saccadic stimulus modeled by means of digital generated saccade waveforms. The electro-oculogram records of thirteen patients diagnosed with ataxia SCA2 (a neurodegenerative hereditary disease) and thirteen healthy subjects used as control were processed to extract saccades.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-010-9049-0/MediaObjects/12559_2010_9049_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-010-9049-0/MediaObjects/12559_2010_9049_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-010-9049-0/MediaObjects/12559_2010_9049_Fig3_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Virkkala J, Hasan J, Värri A, Himanen S-L, Müller K. Automatic sleep stage classification using two-channel electro-oculography. J Neurosci Methods. 2007;166:109–15.
Spicker S, Schulz JrB, Petersen D, Fetter M, Klockgether T, Dichgans J. Fixation instability and oculomotor abnormalities in Friedreich’s ataxia. J Neurol. 1995;242:517–21.
Yokota T, Hayashi H, Hirose K, Tanabe H. Unusual blink reflex with four components in a patient with periodic ataxia. J Neurol. 315;237:313.
Güven Al, Kara S. Classification of electro-oculogram signals using artificial neural network. Expert Syst Appl. 2006;31:199–205.
Irving EL, Steinbach MJ, Lillakas L, Babu RJ, Hutchings N. Horizontal saccade dynamics across the human life span. Invest Ophthalmol Vis Sci. 2006;47:2478–84.
Kumar D, Poole E. Classification of EOG for human computer interface. In: Annual international conference of the IEEE engineering in medicine and biology—proceedings (2002). vol 1, pp 64–67.
Brunner S, Hanke S, Wassertheuer S, Hochgatterer A. EOG pattern recognition trial for a human computer interface. Universal access in human-computer interaction. Ambient interaction (2007). pp 769–776.
Komogortsev OV, Khan JI. Eye movement prediction by Kalman filter with integrated linear horizontal oculomotor plant mechanical model. In: Proceedings of the 2008 symposium on eye tracking research & applications. ACM (2008). 229–236.
Bürk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, Klockgether T. Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3. J Neurol. 1999;246:789–97.
Orozco G, Estrada R, Perry TL, Araña J, Fernandez R, Gonzalez-Quevedo A, Galarraga J, Hansen S. Dominantly inherited olivopontocerebellar atrophy from eastern Cuba: clinical, neuropathological, and biochemical findings. J Neurol Sci. 1989;93:37–50.
Velázquez L. Ataxia espino cerebelosa tipo 2. Principales aspectos neurofisiológicos en el diagnóstico, pronóstico y evaluación de la enfermedad. Ediciones Holguín, Holguín (2006).
Vaya C, Rieta JJ, Sanchez C, Moratal D. Convolutive blind source separation algorithms applied to the electrocardiogram of atrial fibrillation: study of performance. IEEE Transactions on Biomedical Engineering. 1533;54:1530–3.
Klostermann W, Zühlke C, Heide W, Kömpf D, Wessel K. Slow saccades and other eye movement disorders in spinocerebellar atrophy type 1. J Neurol. 1997;244:105–11.
Hyvärinen A, Karhunen J, Oja E. Independent component analysis. New York: Wiley; 2001.
Anemüller J, Sejnowski TJ, Makeig S. Complex independent component analysis of frequency-domain electroencephalographic data. Neural Networks. 2003;16:1311–23.
Hyvarinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Comput. 1997;9:1483–92.
Cardoso J-F. Source separation using higher order moments. In: ICASSP, IEEE international conference on acoustics, speech and signal processing—Proceedings, (1989). vol. 4, pp 2109–2112.
Rojas F, Puntonet CG, Rodríguez-Álvarez M, Rojas I, Martín-Clemente R. Blind source separation in post-nonlinear mixtures using competitive learning, simulated annealing, and a genetic algorithm. IEEE Trans Syst Man Cybern Part C Appl Rev. 2004;34:407–16.
Velázquez-Pérez L. Hereditary ataxias in cuba. Historical, epidemiological, clinical, electrophysiological and quantitative neurological aspects. Las ataxias hereditarias en Cuba. Aspectos históricos, epidemiológicos, clínicos, electrofisiológicos y de neurología cuantitativa. 2001;32:71–6.
Acknowledgments
The authors would like to thank the rest of the personnel in the Centre for the Research and Rehabilitation of Hereditary Ataxias “Carlos J. Finlay”, Holguín, (Cuba) for their support and collaboration. This work has been partially supported by the Spanish MAEC-AECID fellowship program (2008 and 2009). Special thanks to the reviewers for their helpful comments that improved this contribution.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
García, R.V., Rojas, F., Puntonet, C.G. et al. Computer-Aided Diagnosis of Ataxia SCA-2 Using a Blind Source Separation Algorithm. Cogn Comput 2, 165–169 (2010). https://doi.org/10.1007/s12559-010-9049-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12559-010-9049-0