Skip to main content
Log in

Selective Attention and Consciousness: Investigating Their Relation Through Computational Modelling

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The present study aimed at investigating the possible connection between conscious awareness and attention through the implementation of a neurocomputational model of visual selective attention. The development of the model was based on recent neurophysiological findings that document the synchronization of neural activity in cortical areas of the brain and the presence of competitive interactions among stimuli at the early stages of visual processing. The model was used to simulate the findings of a behavioural experiment conducted by Naccache et al. in Psychol Sci 13:416–424 (2002), which have sparked a debate on the possible links between attention and consciousness. The model reproduced closely the pattern of the behavioural data while incorporating mechanisms that take into account the neural activity representing the early visual processing of stimuli and the effects of top–down attention. Thus, by adopting a computational approach, we present a possible explanation of the findings at the neural level of information processing. The implications of these findings for the relation between attentional processes and conscious awareness are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.

    Article  PubMed  CAS  Google Scholar 

  2. Buschman TJ, Miller EK. Top-downversus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science. 2007;30:1860–2.

    Article  Google Scholar 

  3. Beck DM, Kastner S. Stimulus context modulates competition in human extrastriate cortex. Nat Neurosci. 2005;8:1110–6.

    Article  PubMed  CAS  Google Scholar 

  4. Fukuda K, Vogel EK. Human variation in overriding attentional capture. J Neurosci. 2009;29:8726–33.

    Article  PubMed  CAS  Google Scholar 

  5. Grossberg S. How does a brain build a cognitive code? Psych Rev. 1980;87:1–51.

    Article  CAS  Google Scholar 

  6. Grossberg S. The link between brain learning, attention, and consciousness. Consci Cogn. 1999;8:1–44.

    Article  CAS  Google Scholar 

  7. Jackendoff R. How language helps us think. Pragmat Cogn. 1996;4:1–34.

    Article  Google Scholar 

  8. O’Regan JK, Noe A. A sensorimotor account of vision and visual consciousness. Behav Brain Sci. 2001;24:939–73.

    Article  PubMed  Google Scholar 

  9. Posner MI. Attention: the mechanisms of consciousness. Proc Natl Acad Sci USA. 1994;9:7398–403.

    Article  Google Scholar 

  10. Velmans M. The science of consciousness. London: Routledge; 1996.

    Book  Google Scholar 

  11. Bachmann T. A single metatheoretical framework for a number of conscious-vision phenomena. In: Jing Q, editor. Psychological science around the world. Sussex: Psychology Press; 2006. p. 229–42.

    Google Scholar 

  12. Lamme VA. Why visual attention and awareness are different. Trends Cogn Sci. 2003;7:12–8.

    Article  PubMed  Google Scholar 

  13. Koch C, Tsuchiya N. Attention and consciousness: two distinct brain processes. Trends Cogn Sci. 2006;11(1):16–22.

    Article  PubMed  Google Scholar 

  14. Mack A, Rock I. Inattentional blindness. Cambridge, MA: MIT Press; 1998.

    Google Scholar 

  15. Simons DJ, Rensick RA. Change blindness: past, present, and future. Trends Cogn Sci. 2005;9:16–20.

    Article  PubMed  Google Scholar 

  16. Sperling G, Dosher B. Strategy and optimization in human information processing. In: Handbook of perception and human performance. 1986. p. 1–65.

  17. Braun J, Julesz B. Withdrawing attention at little or no cost: detection and discrimination tasks. Percept Psychophys. 1998;60:1–23.

    Article  PubMed  CAS  Google Scholar 

  18. Raymond JE, Shapiro KL, Arnell KM. Temporary suppression of visual processing in an RSVP task: an attentional blink? J Exp Psyc Human Perc Perform. 1992;18(3):849–60.

    Article  CAS  Google Scholar 

  19. Naccache L, Blandin E, Dehaene S. Unconscious masked priming depends on temporal attention. Psychol Sci. 2002;13:416–24.

    Article  PubMed  Google Scholar 

  20. Reynolds JH, Desimone R. Interacting roles of attention and visual salience in V4. Neuron. 2003;37:853–63.

    Article  PubMed  CAS  Google Scholar 

  21. Moran J, Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science. 1985;229:782–4.

    Article  PubMed  CAS  Google Scholar 

  22. Neokleous CK, Avraamides MN, Schizas CN. Computational modeling of visual selective attention based on correlation and synchronization of neural activity. In: Iliadis L, Vlahavas I, Bramer M, editors. Artificial intelligence applications and innovations III. Boston: Springer; 2009. p. 215–23.

    Chapter  Google Scholar 

  23. Neokleous CK, Avraamides NM, Neocleous KC, Schizas NC. A neural network computational model of visual selective attention. Eng Intell Syst J. 2010; (in press).

  24. Neokleous KC, Koushiou M, Avraamides NM, Schizas NC. A coincidence detector neural network model of selective attention. In: Proceedings of the 31st annual meeting of the cognitive science society. 2009. The Netherlands: Amsterdam.

  25. Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci. 2008;9:206–21.

    Article  PubMed  CAS  Google Scholar 

  26. Poghosyan V, Ioannides AA. Attention modulates earliest responses in the primary auditory and visual cortices. Neuron. 2008;58:802–13.

    Article  PubMed  CAS  Google Scholar 

  27. Silver MA, Ress D, Heeger DJ. Neural correlates of sustained spatial attention in human early visual cortex. J Neurophysiol. 2007;97:229–37.

    Article  PubMed  Google Scholar 

  28. Shibata K, Yamagishi N, Goda N, Yoshioka T, Yamashita O, Sato MA, et al. The effects of feature attention on prestimulus cortical activity in the human visual system. Cereb Cortex. 2008;18:1664–75.

    Article  PubMed  Google Scholar 

  29. Sillito MA, Grieve KL, Jones HE, Cudeiro J, Davis J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature. 1995;378:492–6.

    Article  PubMed  CAS  Google Scholar 

  30. Nothdurft HC, Gallant JL, Van Essen DC. Response modulation by texture surround in primate area V1: correlates of popout under anesthesia. Vis Neurosci. 1999;16:15–34.

    Article  PubMed  CAS  Google Scholar 

  31. Wachtler T, Sejnowski TJ, Albright TD. Representation of color stimuli in awake macaque primary visual cortex. Neuron. 2003;37(4):681–91.

    Article  PubMed  CAS  Google Scholar 

  32. Knierim JJ, Van Essen DC. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol. 1992;67(4):961–80.

    PubMed  CAS  Google Scholar 

  33. Jones HE, Grieve KL, Wang W, Sillito MA. Surround suppression in primate V1. J Neurophysiol. 2001;86:2011–28.

    PubMed  CAS  Google Scholar 

  34. Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1985;4(4):219–27.

    PubMed  CAS  Google Scholar 

  35. Walther D, Koch C. Modeling attention to salient proto-objects. Neural Netw. 2006;19:1395–407.

    Article  PubMed  Google Scholar 

  36. Jonides J, Yantis S. Uniqueness of abrupt visual onset in capturing attention. Percept Psychophys. 1988;43:346–54.

    Article  PubMed  CAS  Google Scholar 

  37. Corbetta M, Patel G, Shulman LG. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58(3):306–24.

    Article  PubMed  CAS  Google Scholar 

  38. VanRullen R. Visual saliency and spike timing in the ventral visual pathway. J Physiol Paris. 2003;97(2–3):365–77.

    Article  PubMed  Google Scholar 

  39. Crick F, Koch C. Towards a neurobiological theory of consciousness. Semin Neurosci. 1990;2:263–75.

    Google Scholar 

  40. Connor CE, Gallant JL, Preddie DC, VanEssen DC. Responses in area V4 depend on the spatial relationship between stimulus and attention. J Neurophysiol. 1996;75:1306–8.

    PubMed  CAS  Google Scholar 

  41. Chelazzi L, Miller EK, Duncan J, Desimone R. A neural basis for visual search in inferior temporal cortex. Nature. 1993;363:345–7.

    Article  PubMed  CAS  Google Scholar 

  42. Gruber T, Muller MM, Keil A, Elbert T. Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clin Neurophysiol. 1999;110:2074–85.

    Article  PubMed  CAS  Google Scholar 

  43. Fries P, Reynolds JH, Rorie AE, Desimone R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science. 2001;291:1560–3.

    Article  PubMed  CAS  Google Scholar 

  44. Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, et al. Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. PNAS USA. 2004;101:13050–5.

    Article  PubMed  CAS  Google Scholar 

  45. Niebur E, Hsiao SS, Johnson KO. Synchrony: a neuronal mechanism for attentional selection? Curr Opin Neurol. 2002;12:190–4.

    Article  CAS  Google Scholar 

  46. Saalmann YB, Pigarev IN, Vidyasagar TR. Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science. 2007;316:1612–5.

    Article  PubMed  CAS  Google Scholar 

  47. Gregoriou G, Gotts S, Zhou H, Desimone R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science. 2009;324:1207–10.

    Article  PubMed  CAS  Google Scholar 

  48. Grossberg S. How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spat Vis. 1999;12:163–87.

    Article  PubMed  CAS  Google Scholar 

  49. Dehaene S, Sergent C, Changeux JP. A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc Natl Acad Sci USA. 2003;100:8520–5.

    Article  PubMed  CAS  Google Scholar 

  50. Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top–down processing. Nature. 2001;2:704–16.

    CAS  Google Scholar 

  51. Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P. Modulation of neuronal interactions through neuronal synchronization. Science. 2007;316(5831):1578–9.

    Article  Google Scholar 

  52. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA. 2006;103:10046–51.

    Article  PubMed  CAS  Google Scholar 

  53. Ogawa T, Komatsu H. Target selection in area V4 during a multidimensional visual search task. J Neurosci. 2004;24:6371–82.

    Article  PubMed  CAS  Google Scholar 

  54. Reynolds JH, Desimone R. Interacting roles of attention and visual salience in V4. Neuron. 2003;37:853–63.

    Article  PubMed  CAS  Google Scholar 

  55. Treue S. Visual attention: the where, what, how and why of saliency. Curr Opin Neurobiol. 2003;13:428–32.

    Article  PubMed  CAS  Google Scholar 

  56. Mole C. Attention in the absence of consciousness? Trends Cogn Sci. 2008;12:43–4.

    Article  Google Scholar 

  57. Dehaene S, Changeux JP, Naccache L, Sackur J, Sergent C. Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci. 2006;10:204–11.

    Article  PubMed  Google Scholar 

  58. Dehaene S, Naccache L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition. 2001;79:1–37.

    Article  PubMed  CAS  Google Scholar 

  59. Moutoussis K, Zeki S. The relationship between cortical activation and perception investigated with invisible stimuli. Proc Natl Acad Sci USA. 2002;99:9527–32.

    Article  PubMed  CAS  Google Scholar 

  60. Marois R, Yi DJ, Chun MM. The neural fate of consciously perceived and missed events in the attentional blink. Neuron. 2004;41:465–72.

    Article  PubMed  CAS  Google Scholar 

  61. Sergent C, Baillet S, Dehaene S. Timing of the brain events underlying access to consiousness during the attentional blink. Nat Neurosci. 2005;8(10):1391–400.

    Article  PubMed  CAS  Google Scholar 

  62. VanRullen R, Koch C. Visual selective behaviour can be triggered by a feed-forward process. J Cogn Neurosci. 2003;15:209–17.

    Article  PubMed  Google Scholar 

  63. Lamme VA. Why visual attention and awareness are different. Trends Cogn Sci. 2003;7(1):12–8.

    Article  PubMed  Google Scholar 

  64. Taylor JG. Paying attention to consciousness. Prog Neurobiol. 2003;71:305–35.

    Article  PubMed  Google Scholar 

  65. Taylor JG. CODAM: a neural network model of consciousness. Neural Netw. 2007;20(9):983–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is funded by grant 0308(BE)/16 from the Cyprus Research Promotion Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kleanthis C. Neokleous.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neokleous, K.C., Avraamides, M.N., Neocleous, C.K. et al. Selective Attention and Consciousness: Investigating Their Relation Through Computational Modelling. Cogn Comput 3, 321–331 (2011). https://doi.org/10.1007/s12559-010-9063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-010-9063-2

Keywords

Navigation