Skip to main content
Log in

Non-blind Image Deblurring from a Single Image

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Conventional non-blind image deblurring algorithms often involve in maximum a posteriori (MAP) estimation and natural image priors. However, MAP estimation has several disadvantages which limit its application. To address these issues, we propose to use Bayesian minimum mean squared error (MMSE) estimation instead of MAP to perform deblurring. The new method is based on high-order non-local range–Markov random field (NLR-MRF) prior, which is an effective statistical framework to model prior knowledge of natural images. The high-order NLR-MRF prior can be integrated into MMSE framework naturally. Then, an efficient Gibbs sampling algorithm is employed to compute MMSE estimation. For convenience of computation, we convert to solve a least-squares problem for sampling latent sharp images. The proposed method frees the users from determining regularization parameter beforehand, which relies on unknown noise level. Both quantitative and qualitative evaluations show superior or comparable results to the state-of-the-art deblurring methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fergus R, Singh B, Hertzmann A, Roweis ST, Freeman WT. Removing camera shake from a single photograph. ACM Trans Graph. 2006;25(3):787–94.

    Article  Google Scholar 

  2. Xu L Jia J. Two-phase kernel estimation for robust motion deblurring. In: European conference on computer vision, 2010.

  3. Yuan L, Sun J, Quan L, Shum H. Image deblurring with blurred/noisy image pairs. ACM Trans Graph. 2007;26(3):1–10.

    Article  Google Scholar 

  4. Rav-Acha A, Peleg S. Two motion-blurred images are better than one. Pattern Recogn Lett. 2007;26:311–7.

    Article  Google Scholar 

  5. Ben-Ezra M, Nayar SK. Motion-based motion deblurring. IEEE Trans Pattern Anal Mach Intell. 2004;26(6):689–98.

    Article  PubMed  Google Scholar 

  6. Raskar R, Agrawal A, Tumblin J. Coded exposure photography: motion deblurring using fluttered shutter. ACM Trans Graph. 2006;25(3):795–804.

    Article  Google Scholar 

  7. Shan Q, Jia LJ, Agarwala A. High-quality motion deblurring from a single image. ACM Tran Graph. 2008;27(3):1–10.

    Google Scholar 

  8. Chan TF, Wong CK. Total variation blind deconvolution. IEEE Trans Image Process 1998;7(3):370–375.

    Google Scholar 

  9. Krishnan D, Fergus R. Fast image deconvolution using Hyper-Laplacian priors. In: Conference on neural information processing system, 2009.

  10. Roth S, Black MJ. Fields of experts. Int J Comput Vis. 2009;82(2):205–29.

    Article  Google Scholar 

  11. Schmidt U. Learning and evaluating Markov Random Fields for natural images. Master’s thesis, Technical University of Darmstadt, 2010.

  12. Schmidt U, Schelten K, Roth S. Bayesian deblurring with integrated noise estimation. In: Proceeding of the IEEE conference on computer vision and pattern recognition, 2011.

  13. Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell. 2001;23(11):1222–39.

    Article  Google Scholar 

  14. Sun J, Tappen M. Learning non-local range Markov Random Field for image restoration. In: Proceeding of the IEEE conference on computer vision and pattern recognition, 2011.

  15. Nikolova M. Model distortions in Bayesian MAP reconstruction. Inverse Probl Imaging. 2007;1(2):399–422.

    Article  Google Scholar 

  16. Schmidt U, Gao Q, Roth S. A generative perspective on MRFs in low-level vision. In: Proceeding of the IEEE conference on computer vision and pattern recognition, 2010.

  17. Richardson WH. Bayesian-based iterative method of image restoration. J Opt Soc Am. 1972;62(1):55–59.

    Google Scholar 

  18. Lucy L. An iterative technique for the rectification of observed distributions. Astron J. 1974;79(6):745–54.

    Article  Google Scholar 

  19. Wiener N. Extrapolation, interpolation and smoothing of stationary time series. New York: MIT Press; 1964.

    Google Scholar 

  20. Levin A, Fergus R, Durand F, Freeman WT. Image and depth from a conventional camera with a coded aperture. ACM Trans Graph. 2007;26(3):1–9.

    Article  Google Scholar 

  21. Yuan L, Sun J, Quan L, Shum H-Y. Progressive inter-scale and intra-scale non-blind image deconvolution. ACM Trans Graph. 2008;27(3):1–10.

    Article  Google Scholar 

  22. Lee JH, Ho YS. High-quality non-blind image deconvolution. The fourth Pacific-Rim symposium on image and video technology, 2010.

  23. Joshi N, Zitnich C, Szeliski R, Kriegman DJ. Image deblurring and denoising using color priors. In: Proceeding of the IEEE conference on computer vision and pattern recognition, 2009.

  24. Kundur D, Hatzinakos D. Blind image deconvolution. IEEE Signal Process Mag. 1996;13(3):43–64.

    Article  Google Scholar 

  25. Reeves S, Mersereau R. Blur identification by the method of generalized cross-validation. IEEE Trans Image Process. 1992;1(3):301–11.

    Article  PubMed  CAS  Google Scholar 

  26. Caron J, Namazi N, Rollins C. Noniterative blind data restoration by use of and extracted filter function. Appl Opt. 2002;41(32):6884–9.

    Article  PubMed  Google Scholar 

  27. Jia J. Single image motion deblurring using transparency. In: Proceeding of the IEEE conference on computer vision and pattern recognition, 2007.

  28. Tai Y-W, Du H, Brown MS, Lin S. Correction of spatially varying image and video motion blur using a hybrid camera. IEEE Trans Pattern Anal Mach Intell. 2010;32(6):1012–28.

    Article  PubMed  Google Scholar 

  29. Joshi N, Kang SB, Zitnick CL, Szeliski R. Image deblurring using inertial measurement sensors. ACM Trans Graph. 2010;29(4):1–9.

    Google Scholar 

  30. Levin A, Weiss Y, Durand F, Freeman WT. Understanding and evaluating blind deconvolution algorithms. In: Proceeding of the IEEE conference on computer vision and pattern recognition, 2009.

  31. Cho T, Joshi N, Zitnick C, Kang S, Szeliski R, Freeman W. A content-aware image prior. In: Proceeding of the IEEE conference on computer vision and pattern recognition, 2010.

  32. Hinton GE. Products of experts. In: Proceedings of the ninth international conference on artificial neural networks, vol. 1, pp. 1–6, 1999.

  33. Welling M, Hinton GE, Osindero S. Learning sparse topographic representations with products of Student-t distributions. In: Conference on neural information processing system, 2002.

  34. Levi E. Using natural image priors-Maximizing or sampling? Master’s thesis, The Hebrew University of Jerusalem, 2009.

  35. Weiss Y. Personal Communication, 2005.

  36. Norouzi M, Ranjbar M, Mori G. Stacks of convolutional restricted Boltzmann machines for shift-invariant feature learning. In: Proceeding of the IEEE conference on computer vision and pattern recognition, 2009.

Download references

Acknowledgments

We would like to thank Fergus et al., Krishnan, Levin et al., Schmidt et al., Shan et al., and other authors for providing their part of works on the Internet. This work was supported in part by the Natural Science Foundation of China under Grant No. 90924026, 81071141, and 60873114, the Fundamental Research of 12th five years Plan Project of China under Grant No. 0101050302, the Key Projects of Knowledge Innovation Program at CAS under Grant No. Y1S6051S31, the Advanced Research Projects under Grant No. 5130101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, B., Zhang, W., Ding, H. et al. Non-blind Image Deblurring from a Single Image. Cogn Comput 5, 3–12 (2013). https://doi.org/10.1007/s12559-012-9139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-012-9139-2

Keywords

Navigation