Abstract
A major challenge when attempting to model biochemical reaction networks within the cell is that the dimensionality can become huge, where a large number of molecular species can be involved even in relatively small networks. This investigation attempts to infer models of these networks using a co-evolutionary algorithm that reverse engineers differential equation models of the target system from time-series data. The algorithm not only estimates the system parameters, but also the symbolic structure of the network. To reduce the problem of dimensionality, the algorithm uses a partitioning method while integrating candidate models in order to decouple system equations. In addition, the conventional evolutionary algorithm has been modified and extended to include a technique called ‘eng-genes’, where candidate models are built up from fundamental mathematical terms derived from knowledge about the target system a priori. This technique essentially focuses the search on more biologically plausible models. The approach is demonstrated on several example reaction networks. The results show that the eng-genes method of limiting the term pool using a priori knowledge improves the convergence of the reverse engineering process compared with the conventional method, resulting in more accurate and transparent models.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-012-9159-y/MediaObjects/12559_2012_9159_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-012-9159-y/MediaObjects/12559_2012_9159_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-012-9159-y/MediaObjects/12559_2012_9159_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-012-9159-y/MediaObjects/12559_2012_9159_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-012-9159-y/MediaObjects/12559_2012_9159_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-012-9159-y/MediaObjects/12559_2012_9159_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-012-9159-y/MediaObjects/12559_2012_9159_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-012-9159-y/MediaObjects/12559_2012_9159_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-012-9159-y/MediaObjects/12559_2012_9159_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-012-9159-y/MediaObjects/12559_2012_9159_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-012-9159-y/MediaObjects/12559_2012_9159_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-012-9159-y/MediaObjects/12559_2012_9159_Fig12_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-012-9159-y/MediaObjects/12559_2012_9159_Fig13_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-012-9159-y/MediaObjects/12559_2012_9159_Fig14_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12559-012-9159-y/MediaObjects/12559_2012_9159_Fig15_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ando S, Sakamoto E, Iba H. Evolutionary modeling and inference of gene network. Inf Sci. 2002;145:237–59.
Andrec M, Kholodenko BN, Levy RM, Sontag E. Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy. J Theor Biol. 2005;232:427–41.
Arnqvist G, Rowe L. Antagonistic coevolution between the sexes in a group of insects. Nature. 2002;415:787–9.
Bongard J, Lipson H. Automating genetic network inference with minimal physical experimentation using coevolution. In: Genetic and evolutionary computation GECCO 2004. Lecture Notes in Computer Science. Heidelberg: Springer; 2004. p. 333–45.
Bongard J, Lipson H. Nonlinear system identification using coevolution of models and tests. IEEE Trans Evol Comput. 2005;9(4):361–84.
Bongard J, Lipson H. Automated reverse engineering of nonlinear dynamical systems. Proc Natl Acad Sci. 2007;104:9943–8.
Chan ZSH, Havukkala I, Jain V, Hu Y, Kasabov N. Soft computing methods to predict gene regulatory networks: an integrative approach on time-series gene expression data. Appl Soft Comput. 2008;8:1189–99.
Chandra R, Zhang M. Cooperative coevolution of elman recurrent neural networks for chaotic time series prediction. Neurocomputation. 2012;86:116–23.
Cho DY, Cho KH, Zhang BT. Identification of biochemical networks by s-tree based genetic programming. Bioinformatics. 2006;22:1631–40.
Clarke R, Ressom HW, Wang A, Xuan J, Liu MC, Gehan EA, Wang Y. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat Rev Cancer. 2008;8(1):37–49.
Connally P, Li K, Irwin GW. Two applications of eng-genes bases nonlinear identification. In: Proceedings of the 16th IFAC world congress. 2005.
Connally P, Li K, Irwin GW. Integrated structure selection and parameter optimisation for eng-genes neural models. Neurocomputing. 2008;71(13–15):2964–77.
Cosentino C, Curatola W, Montefusco F, Bansal M, di Bernardo D, Amato F. Linear matrix inequalities approach to reconstruction of biological networks. IET Syst Biol. 2007;1(3):164–73.
Gardner TS, Faith JJ. (2005) Reverse-engineering transcription control networks. Phys Life Rev. 2(1):65–88.
Gormley P, Li K, Irwin G. Modelling molecular interaction pathways using a two-stage identification algorithm. Syst Synth Biol. 2007;1(3):145–60.
Gustafsson M, Hornquist M, Lombardi A. Constructing and analyzing a large-scale gene-to-gene regulatory network lasso-constrained inference and biological validation. IEEE/ACM Trans Comput Biol Bioinform. 2005;2(3):254–61.
Kitano H. Systems biology: a brief overview. Science. 2002;295:1662–4.
Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M. Dynamic modeling of genetic networks using genetic algorithm and s-system. Bioinformatics. 2003;19(5):643–50.
Kimura S, Ide K, Kashihara A, et al. Inference of s-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics. 2005;21(7):1154–63.
KLi, Peng J. System oriented neural networks problem formulation, methodology, and application. Int J Pattern Recognit Artif Intell. 2006;20:143–58.
Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H. Systems biology in practice. Germany: Wiley-VCH Weinheim; 2005.
Lee WP, Yang KC. A clustering-based approach for inferring recurrent neural networks as gene regulatory networks. Neurocomputing. 2008;71:600–10.
Li B, Lin T, Liao L, Fan C. Genetic algorithm based on multipopulation competitive coevolution. In: 2008 IEEE congress on evolutionary computation; 2008. p. 225–8.
Li K. Eng-genes: a new genetic modelling approach for nonlinear dynamic systems. In: Proceedings of the 16th IFAC world congress; 2005.
Potter MA, Jong KAD. Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput. 2000;8:1–29.
Price ND, Shmulevich I. Biochemical and statistical network models for systems biology. Curr Opin Biotechnol. 2007;18(4):365–70.
Rawal A, Rajagopalan P, Miikkulainen R. Constructing competitive and cooperative agent behavior using coevolution. In: Proceedings of the 2010 IEEE conference on computational intelligence and games; 2010. p. 107–14.
Sakamoto E, Iba H. Inferring a system of differential equations for a gene regulatory network by using genetic programming. In: Proceedings of the 2001 congress on evolutionary computation, vol 1; 2001. p. 720–6.
Savageau MA. Biochemical systems analysis: a study of function and design in molecular biology. Reading: Addison-Wesley; 1976.
Styczynski MP, Stephanopoulos G. Overview of computational methods for the inference of gene regulatory networks. Comput Chem Eng. 2005;29:519–34.
Sugimoto M, Kikuchi S, Tomita M. Reverse engineering of biochemical equations from time-course data by means of genetic programming. Biosystems. 2005;80(2):155–64.
Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM. Systematic determination of genetic network architecture. Nat Genet. 1999;22(3):281–5.
Tegner J, Björkegren J. Perturbations to uncover gene networks. Trends Genet. 2006;23(1):34–41.
Tomita M, Hashimoto K, Takahashi K, Shimizu T, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter J, Hutchison R. E-cell: software environment for whole-cell simulation. Bioinformatics. 1999;15:72–84
Uchibe E, Asada M. Incremental coevolution with competitive and cooperative tasks in a multirobot environment. Proc IEEE. 2006;94:1412–24.
Vera J, JBachmann, Pfeifer A, et al. A systems biology approach to analyse amplification in the jak2–stat5 signalling pathway. BMC Syst Biol. 2008;2(1):38.
Vilela M, Chou IC, Vinga S, Vasconcelos A, Voit E, Almeida J Parameter optimization in s-system models. BMC Syst Biol. 2008;2(1):35.
Voit EO, Almeida J. Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics. 2004;20(11):1670–81.
Wang X, Wu M, Li Z, Chan C. Short time-series microarray analysis: methods and challenges. BMC Syst Biol. 2008;2(1):58.
Wang Y, Miller DJ, Clarke R. Approaches to working in high-dimensional data spaces: gene expression microarrays. Br J Cancer. 2008;98(6):1023–8.
Zykov V, Bongard J, Lipson H. Co-evolutionary variance can guide physical testing in evolutionary system identification. In: Proceedings of the 2005 NASA/DoD conference on evolvable hardware; 2005. p. 213–20.
Acknowledgments
This work was partially supported by the Research Councils UK under grant EP/G042594/1, the National Science Foundation of China (61074032,51007052,61104089), and Science and Technology Commission of Shanghai Municipality (11ZR1413100).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gormley, P., Li, K., Wolkenhauer, O. et al. Reverse Engineering of Biochemical Reaction Networks Using Co-evolution with Eng-Genes. Cogn Comput 5, 106–118 (2013). https://doi.org/10.1007/s12559-012-9159-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12559-012-9159-y