Skip to main content
Log in

Model-Based Human Gait Recognition Via Deterministic Learning

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

In this paper, we present a new model-based approach for human gait recognition in the sagittal plane via deterministic learning (DL) theory. Side silhouette lower limb joint angles characterize the gait system dynamics and are selected as the gait feature. Locally accurate identification of the gait system dynamics is achieved by using radial basis function (RBF) neural networks through DL. The obtained knowledge of the approximated gait system dynamics is stored in constant RBF networks. A gait signature is then derived from the extracted gait system dynamics along the phase portrait of joint angles. A bank of estimators is constructed using constant RBF networks to represent the training gait patterns. By comparing the set of estimators with a test gait pattern, a set of recognition errors are generated, and the average L 1 norms of the errors are taken as the similarity measure between the dynamics of the training gait patterns and the dynamics of the test gait pattern. Therefore, the test gait pattern can be rapidly recognized according to the smallest error principle. In contrast to other existing approaches, the main focus of this paper is on obtaining and reusing the knowledge of the gait system dynamics. Finally, experiments are carried out on the CASIA-A and CASIA-B gait databases to benchmark the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Murase H, Sakai R. Moving object recognition in eigenspace representation: gait analysis and lip reading. Pattern Recognit Lett. 1996;17(2):155–62.

    Article  Google Scholar 

  2. Little JJ, Boyd JE. Recognizing people by their gait: the shape of motion. Videre: J Comput Vis Res. 1998;1(2):83–105.

    Google Scholar 

  3. Boulgouris NV, Hatzinakos D, Plataniotis KN. Gait recognition: a challenging signal processing technology for biometric identification. IEEE Signal Proc Mag. 2005;22(6):78–90.

    Article  Google Scholar 

  4. Han J, Bhanu B. Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell. 2006;28(2):316–22.

    Article  PubMed  Google Scholar 

  5. Yoo JH, Nixon MS. Automated markerless analysis of human gait motion for recognition and classification. ETRI J. 2011;33(2):259–66.

    Article  Google Scholar 

  6. Principi E, Rotili R, Wöllmer M, Eyben F, Squartini S, Schuller B. Real-time activity detection in a multi-talker reverberated environment. Cogn Comput. 2012;4(4):386–97.

    Article  Google Scholar 

  7. Faundez-Zanuy M, Hussain A, Mekyska J, Sesa-Nogueras E, Monte-Moreno E, Esposito A, Chetouani M, Garre-Olmo J, Abel A, Smekal Z, Lopez-de-Ipina K. Biometric applications related to human beings: there is life beyond security. Cogn Comput. 2013;5(1):136–51.

    Article  Google Scholar 

  8. Winter DA. The biomechanics and motor control of human movement. 2nd ed. New York: Wiley; 1990.

    Google Scholar 

  9. Yang X, Zhou Y, Zhang T, Shu G, Yang J. Gait recognition based on dynamic region analysis. Signal Process. 2008;88(9):2350–56.

    Article  Google Scholar 

  10. Wang L, Ning H, Hu W, Tan T. Automatic gait recognition based on statistical shape analysis. IEEE Trans Image Process. 2003;12(9):1120–31.

    Article  CAS  PubMed  Google Scholar 

  11. Bobick AF, Johnson AY. Gait recognition using static activity-specific parameters. In: Proceedings of the computer vision and pattern recognition; 2001. p. I-423–30.

  12. Yoo JH, Nixon MS, Harris CJ. Extracting human gait signatures by body segment properties. In: Proceedings of the 2002 international conference on image processing; 2002. p. 285–8.

  13. Wagg DK, Nixon MS. On automated model-based extraction and analysis of gait. In: Proceedings of the 6th IEEE international conference on automatic face and gesture recognition; 2004. p. 151–6.

  14. Cunado D, Nash JM, Nixon MS, Carter JN. Gait extraction and description by evidence-gathering. In: Proceedings of the second international conference on audio and video based biometric person authentication; 1999. p. 43–8.

  15. Lakany H. Extracting a diagnostic gait signature. Pattern Recognit. 2008;41(5):1627–37.

    Article  Google Scholar 

  16. Cunado D, Nixon MS, Carter JN. Automatic extraction and description of human gait models for recognition purposes. Comput Vis Image Underst. 2003;90(1):1–41.

    Article  Google Scholar 

  17. Adeli-Mosabbeb E, Fathy M, Zargari F. Model-based human gait tracking, 3D reconstruction and recognition in uncalibrated monocular video. Imaging Sci J. 2012;60(1):9–28.

    Article  Google Scholar 

  18. Zhang R, Vogler CH, Metaxas D. Human gait recognition at sagittal plane. Image Vis Comput. 2007;25(3):321–30.

    Article  Google Scholar 

  19. Wang C, Hill DJ. Learning from neural control. IEEE Trans Neural Netw. 2006;17(1):130–46.

    Article  PubMed  Google Scholar 

  20. Wang C, Hill DJ. Deterministic learning theory for identification, recognition and control. Boca Raton: CRC Press; 2009.

    Google Scholar 

  21. Wang C, Hill DJ. Deterministic learning and rapid dynamical pattern recognition. IEEE Trans Neural Netw. 2007;18(3):617–30.

    Article  PubMed  Google Scholar 

  22. Park J, Sandberg IW. Universal approximation using radial-basis-function networks. Neural Comput. 1991;3(2):246–57.

    Article  Google Scholar 

  23. Borghese NA, Bianchi L, Lacquaniti F. Kinematic determinants of human locomotion. J Physiol. 1996;494:863–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Gorinevsky D. On the persistency of excitation in radial basis function network identification of nonlinear systems. IEEE Trans Neural Networks. 1995;6(5):1237–44.

    Article  CAS  PubMed  Google Scholar 

  25. Murray MP. Gait as a total pattern of movement. Am J Phys Med. 1967;46(1):290–332.

    CAS  PubMed  Google Scholar 

  26. Wang C, Chen T, Chen G, Hill DJ. Deterministic learning of nonlinear dynamical systems. Int J Bifurcat Chaos. 2009;19(4):1307–28.

    Article  Google Scholar 

  27. Farrell J. Stability and approximator convergence in nonparametric nonlinear adaptive control. IEEE Trans Neural Netw. 1998;9(5):1008–20.

    Article  CAS  PubMed  Google Scholar 

  28. Ning H, Tan T, Wang L, Hu W. Kinematics-based tracking of human walking in monocular video sequences. Image Vis Comput. 2004;22(5):429–41.

    Article  Google Scholar 

  29. Wang L, Ni H, Tan T, Hu W. Fusion of static and dynamic body biometrics for gait recognition. IEEE Trans Circuits Syst Video. 2004;14(2):149–58.

    Article  Google Scholar 

  30. Zhu Y, Dariush D, Fujimura K. Kinematic self retargeting: A framework for human pose estimation. Comput Vis Image Underst. 2010;114(12):1362–75.

    Article  Google Scholar 

  31. Canton-Ferrer C, Casas JR, Pardàs M. Human motion capture using scalable body models. Comput Vis Image Underst. 2011;115(10):1363–74.

    Article  Google Scholar 

  32. Lee L, Grimson WEL. Gait analysis for recognition and classification. In: Proceedings of the 5th IEEE international conference on automatic face and gesture recognition; 2002. p. 148–55.

  33. Collins RT, Gross R, Shi J. Silhouette-based human identification from body shape and gait. In: Proceedings of the 5th IEEE international conference on automatic face and gesture recognition; 2002. p. 366–71.

  34. Phillips PJ, Sarkar S, Robledo I, Grother P, Bowyer KW. Baseline results for the challenge problem of human ID using gait analysis. In: Proceedings of the 5th international conference on automatic face and gesture recognition; 2002. p. 130–5.

  35. Ekinci M. Human identification using gait. Turk J Electron Eng. 2006;14(2):267–91.

    Google Scholar 

  36. Lu J, Zhang E. Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion. Pattern Recognit Lett. 2007;28(16):2401–11.

    Article  Google Scholar 

  37. Lee H, Hong S, Kim E. Neural network ensemble with probabilistic fusion and its application to gait recognition. Neurocomputing. 2009;72(7–9):1557–64.

    Article  Google Scholar 

  38. Hong S, Lee H, Nizami IF, Kim E. A new gait representation for human identification: mass vector. In: The 2nd IEEE conference on industrial electronics and applications; 2007. p. 669–73.

  39. Yu S, Tan D, Tan T. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: The 18th international conference on pattern recognition; 2006. p. 441–4.

  40. Goffredo M, Bouchrika I, Carter JN, Nixon MS. Self-calibrating view-invariant gait biometrics. IEEE Trans Syst Man Cybern B. 2010;40(4):997–1008.

    Article  Google Scholar 

  41. Kusakunniran W, Wu Q, Zhang J, Li H. Pairwise shape configuration-based PSA for gait recognition under small viewing angle change. In: The 8th IEEE international conference on advanced video and signal-based surveillance; 2011. p. 17–22.

Download references

Acknowledgments

This work was supported by the National Science Fund for Distinguished Young Scholars (Grant No. 61225014), by the National Natural Science Foundation of China (Grant No. 60934001) and by China Postdoctoral Science Foundation (Grant No. 2013M531851). The authors would like to thank CBSR for providing access to the CASIA-A and CASIA-B gait databases and thank the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, W., Wang, C. & Li, Y. Model-Based Human Gait Recognition Via Deterministic Learning. Cogn Comput 6, 218–229 (2014). https://doi.org/10.1007/s12559-013-9221-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-013-9221-4

Keywords

Navigation