Abstract
Many time series problems such as air pollution index forecast require online sequential learning rather than batch learning. One of the major obstacles for air pollution index forecast is the data imbalance problem so that forecast model biases to the majority class. This paper proposes a new method called meta-cognitive online sequential extreme learning machine (MCOS-ELM) that aims to alleviate data imbalance problem and sequential learning at the same time. Under a real application of air pollution index forecast, the proposed MCOS-ELM was compared with retrained ELM and online sequential extreme learning machine in terms of accuracy and computational time. Experimental results show that MCOS-ELM has the highest efficiency and best accuracy for predicting the minority class (i.e., the most important but with fewest training samples) of air pollution level.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Grivas G, Chaloulakou A. Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmos Environ. 2006;40(7):1216–29.
Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing. 2006;70(1–3):489–501.
Vong C-M, Ip W-F, Wong P-K, Chiu C-C. Predicting minority class for suspended particulate matters level by extreme learning machine. Neurocomputing. 2014;128:136–44.
Sun Z-L, Au K-F, Choi T-M. A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines. IEEE Trans Syst Man Cybern B Cybern. 2007;37(5):1321–31.
Zhang R, Huang G-B, Sundararajan N, Saratchandran P. Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM Trans Comput Biol Bioinform. 2007;4(3):485–95.
Nizar AH, Dong ZY, Wang Y. Power utility nontechnical loss analysis with extreme learning machine method. IEEE Trans Power Syst. 2008;23(3):946–55.
Suresh S, Saraswathi S, Sundararajan N. Performance enhancement of extreme learning machine for multi-category sparse data classification problems. Eng Appl Artif Intell. 2010;23(7):1149–57.
Xu Y, Dong ZY, Meng K, Zhang R, Wong KP. Real-time transient stability assessment model using extreme learning machine. Gener Transm Distrib IET. 2011;5(3):314–22.
Savitha R, Suresh S, Sundararajan N. Fast learning circular complex-valued extreme learning machine (CC-ELM) for real-valued classification problems. Inf Sci. 2012;187:277–90.
Wang QF, Cambria E, Liu CL, Hussain A. Common sense knowledge for handwritten Chinese recognition. Cognit Comput. 2013;5(2):234–42.
Cambria E, Hussain A. Sentic album: content-, concept-, and context-based online personal photo management system. Cognit Comput. 2012;4(4):477–96.
Cambria E, Hussain A. Sentic computing: techniques, tools, and applications”,springer briefs in cognitive computation. Dordrecht: Springer; 2012.
Feng L, Ong YS, Lim MH. ELM-guided memetic computation for vehicle routing. IEEE Intell Syst. 2013;28(6):10–3.
Gastaldo P, Zunino R, Cambria E, Decherchi S. Combining ELMs with random projections. IEEE Intell Syst. 2013;28(6):18–20.
Huang G-B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern. 2012;42(2):513–29.
Liang N-Y, Huang G-B, Saratchandran P, Sundararajan N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw. 2006;17(6):1411–23.
Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in P2P networks. Neurocomputing. 2011;74(16):2438–43.
Xie S, Yang J, Gong H, Yoon S, Park D. Intelligent fingerprint quality analysis using online sequential extreme learning machine. Soft Comput. 2012;16(9):1555–68.
Zhao J, Wang Z, Park DS. Online sequential extreme learning machine with forgetting mechanism. Neurocomputing. 2012;87:79–89.
Wang H, Qian G, Feng X-Q. Predicting consumer sentiments using online sequential extreme learning machine and intuitionistic fuzzy sets. Neural Comput Appl. 2013;22(3–4):479–89.
Murphey YL, Guo H, Feldkamp LA. Neural learning from unbalanced data. Appl Intell. 2004;21(2):117–28.
SateeshBabu G, Suresh S. Meta-cognitive neural network for classification problems in a sequential learning framework. Neurocomputing. 2012;81:86–96.
Subramanian K, Suresh S. A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system. Appl Soft Comput. 2012;12(11):3603–14.
Savitha R, Suresh S, Sundararajan N. A meta-cognitive learning algorithm for a fully complex-valued relaxation network. Neural Netw. 2012;32:209–18.
Nelson TO, Narens L. Metamemory: a theoretical framework and new findings. Psychol Learn Motiv. 1990;26:125–41.
SMG. (16 Apr 2013). E-publication Download Page. Available: http://www.smg.gov.mo/www/ccaa/pdf/e_pdf_download.php.
Huang G-B (2013). MATLAB codes of ELM algorithm. Available: http://www.ntu.edu.sg/home/egbhuang/elm_random_hidden_nodes.html.
Juhos I, Makra L, Tóth B. Forecasting of traffic origin NO and NO2 concentrations by support vector machines and neural networks using principal component analysis. Simul Model Pract Theory. 2008;16(9):1488–502.
Stigler SM. Francis galton’s account of the invention of correlation. Stat Sci. 1989;4(2):73–9.
Yang J-Y, Ip W-F, Vong C-M, Wong P-K. Effect of choice of kernel in support vector machines on ambient air pollution forecasting. In: International Conference on System Science and Engineering (ICSSE); 2011. pp. 552–557.
SMG. (2013). Air quality index bulletin. Available: http://www.smg.gov.mo/www/ccaa/iqa/fe_iqa.htm.
Huang G-B (2013). Basic ELM algorithms. Available: http://www.ntu.edu.sg/home/egbhuang/elm_codes.html.
Savitha R, Suresh S, Kim HJ. A meta-cognitive learning algorithm for an extreme learning classifier. Cognit Comput. 2013. doi:10.1007/s12559-013-9223-2.
Zhang S, He B, Nian R, Wang J, Han B, Lendasse A, Yuan G. Fast image recognition based on independent component analysis and extreme learning machine. Cognit Comput. 2014. doi:10.1007/s12559-014-9245-4.
Li Y, Zhu E, Zhu X, Yin J, Zhao J. Counting pedestrian with mixed features and extreme learning machine. Cognit Comput. 2014. doi:10.1007/s12559-014-9248-1.
Xie S, Yoon S, Yang J, Lu Y, Park DS, Zhou B. Feature component-based extreme learning machines for finger vein recognition. Cognit Comput. 2014. doi:10.1007/s12559-014-9254-3.
Liu H, Sun F, Yu Y. Multitask extreme learning machine for visual tracking. Cognit Comput. 2014. doi:10.1007/s12559-013-9242-z.
Acknowledgments
The research is supported by the University of Macau Research Grant, Grant No. MYRG141(Y2-L2)-FST11-IWF, MYRG075(Y2-L2)-FST12-VCM.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vong, CM., Ip, WF., Chiu, CC. et al. Imbalanced Learning for Air Pollution by Meta-Cognitive Online Sequential Extreme Learning Machine. Cogn Comput 7, 381–391 (2015). https://doi.org/10.1007/s12559-014-9301-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12559-014-9301-0