Skip to main content
Log in

A Real-Time Active Pedestrian Tracking System Inspired by the Human Visual System

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Pedestrian detection and tracking play a significant role in surveillance. Despite the numerous detection and tracking methods proposed in the literature, when the pedestrian is too small to recognize, which is a common case in modern surveillance systems, all methods fail. In order to deal with such case, we propose an active pedestrian tracking system inspired by the human visual system. A coarse-to-fine pedestrian detection algorithm is proposed for the small pedestrian detection by combining the Gaussian mixture model background subtraction with the histogram of oriented gradient detection. In addition, a three-dimensional pan–tilt–zoom control model is presented, which requires no calibration and is more accurate than other control models. In order to actively track a pedestrian in real time, we utilize an active control algorithm and a tracking–learning–detection tracker. Experimental results demonstrate that our active tracking system is both efficient and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel AVD. A survey of appearance models in visual object tracking. ACM Trans Intell Syst Technol. 2013;4(4):58.

    Article  CAS  Google Scholar 

  2. Lu W, Li X, Gao X, et al. A video quality assessment metric based on human visual system. Cogn Comput. 2010;2(2):120–31.

    Article  Google Scholar 

  3. Rapantzikos K, Avrithis Y, Kollias S. Spatiotemporal features for action recognition and salient event detection. Cogn Comput. 2011;3(1):167–84.

    Article  Google Scholar 

  4. Tu Z, Zheng A, Yang E, et al. A biologically inspired vision-based approach for detecting multiple moving objects in complex outdoor scenes. Cogn Comput. 2015. doi:10.1007/s12559-015-9318-z.

  5. Gao F, Zhang Y, Wang J, et al. Visual attention model based vehicle target detection in synthetic aperture radar images: A novel approach. Cogn Comput. 2014. doi:10.1007/s12559-014-9312-x.

  6. Su Y, Zhao Q, Zhao L, et al. Abrupt motion tracking using a visual saliency embedded particle filter. Pattern Recogn. 2014;47(5):1826–34.

    Article  Google Scholar 

  7. Murray D, Basu A. Motion tracking with an active camera. IEEE Trans Pattern Anal Mach Intel. 1994;16(5):449–59.

    Article  Google Scholar 

  8. Daniilidis K, Krauss C, Hansen M, Sommer G. Real-time tracking of moving objects with an active camera. Real Time Imag. 1998;4(1):3–20.

    Article  Google Scholar 

  9. Kang S, Paik JK, Koschan A, Abidi BR, Abidi MA. Real-time video tracking using PTZ cameras. Quality control by artificial vision. Int Soc Opt Photon. 2003;5132:103–111.

    Google Scholar 

  10. Ribaric S, Adrinek G, Segvic S. Real-time active visual tracking system. In: Proceedings of 12th IEEE mediterranean electrotechnical conference, Dubrovnik, Croatia; 2004. vol 1, pp. 231–234.

  11. Zhang L, Xu K., Yu S, Fu R, Xu Y. An effective approach for active tracking with a PTZ camera. In: IEEE international conference on robotics and biomimetics (ROBIO), 2010. pp. 1768–1773.

  12. Salvagnini P, Cristani M, Del Bue A, Murino V. An experimental framework for evaluating ptz tracking algorithms. Computer vision systems. Berlin Heidelberg: Springer; 2011. p. 81–90.

    Google Scholar 

  13. Szwoch G, Dalka P, Ciarkowski A, Szczuko P, Czyzewski A. Visual object tracking system employing fixed and PTZ cameras. Intel Decis Technol. 2011;5(2):177–88.

    Google Scholar 

  14. Zhang R. Active target tracking using PTZ camera. Xi’an: XiDian University; 2009.

    Google Scholar 

  15. Davis J, Chen X. Calibrating pan-tilt cameras in wide-area surveillance networks. In: Proceedings. Ninth IEEE international conference on computer vision, 2003. pp. 144–149.

  16. Park U, Choi HC, Jain AK, et al. Face tracking and recognition at a distance: A coaxial and concentric PTZ camera system. IEEE Trans Inf Forensics Secur. 2013;8(10):1665–77.

    Article  Google Scholar 

  17. Morbidi F, Mariottini GL. Active target tracking and cooperative localization for teams of aerial vehicles. IEEE Trans Control Syst Technol. 2013;21(5):1694–707.

    Article  Google Scholar 

  18. Doyle DD, Jennings AL, Black JT. Optical flow background estimation for real-time pan/tilt camera object tracking. Measurement. 2014;48:195–207.

    Article  Google Scholar 

  19. Yildiz A, Takemura N, Iwai Y, et al. Tracking people with active cameras, human–computer interaction. Towards intelligent and implicit interaction. Berlin Heidelberg: Springer; 2013. p. 270–9.

    Book  Google Scholar 

  20. Haque MA, Nasrollahi K, Moeslund TB. Real-time acquisition of high quality face sequences from an active pan-tilt-zoom camera. In: 10th IEEE international conference on advanced video and signal based surveillance (AVSS), 2013. pp 443–448.

  21. Cai Y, Medioni G, Dinh TB. Towards a practical PTZ face detection and tracking system. In: IEEE workshop on applications of computer vision (WACV), 2013. pp 31–38.

  22. Papageorgiou C, Poggio T. A trainable system for object detection. Int J Comput Vis. 2000;38(1):15–33.

    Article  Google Scholar 

  23. Benenson R, Omran M, Hosang J, et al. Ten years of pedestrian detection, What have we learned?. arXiv preprint arXiv:1411.4304, 2014.

  24. Dollár P, Wojek C, Schiele B, Perona P. Pedestrian detection: an evaluation of the state of the art. PAMI, 2012.

  25. Dalal N, Triggs B. Histograms of oriented gradients for human detection. IEEE Comput Soc Conf Comput Vis Pattern Recogn. 2005;1:886–93.

    Google Scholar 

  26. Pang Y, Yuan Y, Li X, Pan J. Efficient HOG human detection. Signal Process. 2011;91(4):773–81.

    Article  Google Scholar 

  27. Dollár P, Tu Z, Perona P, et al. Integral channel features. BMVC. 2009;2(3):5.

    Google Scholar 

  28. Luo P, Tian Y, Wang X, et al. Switchable deep network for pedestrian detection. In: IEEE conference on computer vision and pattern recognition (CVPR), 2014. pp. 899–906.

  29. Lim JJ, Zitnick CL, Dollár P. Sketch tokens: a learned mid-level representation for contour and object detection. In: IEEE conference on computer vision and pattern recognition (CVPR), 2013. pp. 3158–3165.

  30. Walk S, Majer N, Schindler K, et al. New features and insights for pedestrian detection. In: IEEE conference on computer vision and pattern recognition (CVPR), 2010. pp. 1030–1037.

  31. Wang X, Han TX, Yan S. An HOG-LBP human detector with partial occlusion handling. In: IEEE international conference on computer vision, 2009. pp. 32–39.

  32. Costea AD, Nedevschi S. Word channel based multiscale pedestrian detection without image resizing and using only one classifier. In: IEEE conference on computer vision and pattern recognition (CVPR), 2014. pp. 2393–2400.

  33. Paisitkriangkrai S, Shen C, Hengel A. Efficient pedestrian detection by directly optimize the partial area under the ROC curve. arXiv preprint arXiv:1310.0900, 2013.

  34. Maji S, Berg AC, Malik J. Classification using intersection kernel support vector machines is efficient. In: IEEE conference on computer vision and pattern recognition, 2008. pp. 1–8.

  35. Schapire RE, Singer Y. Improved boosting algorithms using confidence-rated predictions. Mach Learn. 1999;37(3):297–336.

    Article  Google Scholar 

  36. Ouyang W, Wang X. Joint deep learning for pedestrian detection. In: IEEE international conference on computer vision (ICCV), 2013. pp. 2056–2063.

  37. Zong W. Research and implementation of moving object tracking algorithms based on PTZ camera. Boston: Northeastern University; 2011.

    Google Scholar 

  38. Zhang Q, Bo LI, Zhang N. Research on automatic target tracking based on PTZ system. TELKOMNIKA Indones J Electr Eng. 2012;10(7):1582–7.

    Google Scholar 

  39. Li H, Shen C, Shi Q. Real-time visual tracking using compressive sensing. In: IEEE conference on computer vision and pattern recognition, 2011. pp. 1305–1312.

  40. Zhang K, Zhang L, Yang MH. Real-time compressive tracking. Computer vision—ECCV. Berlin Heidelberg: Springer; 2012. p. 864–77.

    Google Scholar 

  41. Boris B, Yang MH, Serge B. Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell. 2011;33(8):1619–32.

    Article  Google Scholar 

  42. Xue M, Ling H. Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell. 2011;33(11):2259–72.

    Article  Google Scholar 

  43. Kalal Z, Krystian M, Jiri M. Tracking–learning–detection. IEEE Trans Pattern Anal Mach Intell. 2012;34(7):1409–22.

    Article  PubMed  Google Scholar 

  44. Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. In: IEEE computer society conference on computer vision and pattern recognition, 1999. p. 2.

  45. Chan YT, Allan GC. Hu, and J. B. Plant. A Kalman filter based tracking scheme with input estimation. IEEE Trans Aerosp Electron Syst. 1979;2:237–44.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 61175096, 61173079, 61472163 and 61472163), Specialized Fund for Joint Building Program of Beijing municipal Education Commission, and the Key Project of Natural Science Foundation of Shandong Province (No. ZR2011FZ003). The authors would like to thank the editors and the anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjie Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, Q., Wang, B. et al. A Real-Time Active Pedestrian Tracking System Inspired by the Human Visual System. Cogn Comput 8, 39–51 (2016). https://doi.org/10.1007/s12559-015-9334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-015-9334-z

Keywords

Navigation