Skip to main content

Advertisement

Log in

Cognitively Inspired 6D Motion Estimation of a Noncooperative Target Using Monocular RGB-D Images

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

With the increasing demand of information acquisition in cognitive computation, there has been a growing interest in the study of cognitively inspired computation methods for motion estimation through the use of the vision to obtain more information. Generally, when implementing those methods, it is, however, necessary on occasion to know some prior information of the target complying with some rules. It therefore imposes some obstacles to the application of those approaches. In this paper, a novel cognitively inspired 6D motion estimation method for a noncooperative target is proposed through the use of monocular RGB-D images. We build the 3D model of target first and then estimate the pose of target by solving the perspective-n-point problem. In addition, the Kalman filter is applied to estimate the 6D motion of a target. The target estimated in our method can move with arbitrarily varying velocity on the practically reasonable assumption that those acquired images are not distorted. In our estimation method, priori information of the target and the constraint of target moving velocity are not needed. Simulation and experimental results are provided to demonstrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Fresco N. The explanatory role of computation in cognitive science. Minds Mach. 2012;22(4):353–80.

    Article  Google Scholar 

  2. Chanceaux M, Guerin-Dugue A, Lemaire B, Baccino T. A computational cognitive model of information search in textual materials. Cognit Comput. 2014;6(1):1–17.

    Article  Google Scholar 

  3. Haikonen POA. Yes and no: match/mismatch function in cognitive robots. Cognit Comput. 2014;6(2):158–63.

    Article  Google Scholar 

  4. Clavelli A, Karatzas D, Llados J, Ferraro M, Boccignone G. Modelling task-dependent eye guidance to objects in pictures. Cognit Comput. 2014;6(3):558–84.

    Article  Google Scholar 

  5. Zhao JJ, Du C, Sun H, Liu XT, Sun JX. Biologically motivated model for outdoor scene classification. Cognit Comput. 2015;7(1):20–33.

    Article  Google Scholar 

  6. Bellotto N, Benfold B, Harland H, Nagel HH, Pirlo N, Reid I, Sommerlade E, Zhao C. Comput Visi Image Underst. 2012;116(3):457–71.

    Article  Google Scholar 

  7. Khalid A, Mekid S, Hussain A. Characteristic analysis of bioinspired pod structure robotic configurations. Cognit Comput. 2014;6(1):89–100.

    Article  Google Scholar 

  8. Liu HP, Sun FC, Yu YL. Multitask extreme learning machine for visual tracking. Cognit Comput. 2014;6(3):391–404.

    Article  Google Scholar 

  9. Nardone SC, Aidala VJ. Observability criteria for bearings-only target motion analysis. IEEE Trans Aerosp Electron Syst. 1981;17(2):161–6.

    Google Scholar 

  10. Fogel E, Gavish M. Nth-order dynamics target observability from angle measurements. IEEE Trans Aerosp Electron Syst. 1988;24(4):305–8.

    Article  Google Scholar 

  11. Song TL, Um TY. Practical guidance law for homing missiles with bearings-only measurements. IEEE Trans Aerosp Electron Syst. 1996;32(1):434–44.

    Article  Google Scholar 

  12. Horn BKP, Schunck BG. Determining optical flow. Artif Intell. 1981;17:185–203.

    Article  Google Scholar 

  13. Bell CS, Puerto GA, Mariottini GL, Valdastri P. Six DOF motion estimation for teleoperated flexible endoscopes using optical flow: a comparative study. In: Proceedings of IEEE international conference on robotics and automation; 2014. p. 5386–92.

  14. Tseng GJ, Sood AK. Analysis of long image sequence for structure and motion estimation. IEEE Trans Syst Man Cybern. 1989;19(6):1511–26.

    Article  Google Scholar 

  15. Mou W, Wang H, Seet G. Efficient visual odometry estimation using stereo camera. In: Proceedings of IEEE international conference on control and automation; 2014. p. 1399–1403.

  16. Ye M, Yang R. Real-time simultaneous pose and shape estimation for articulated objects using a single depth camera. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition; 2014. p. 23–8.

  17. Bishop CM. Pattern recognition and machine learning. Berlin: Springer; 2007.

    Google Scholar 

  18. Dementhon DF, Davis LS. Model-based object pose in 25 lines of code. Int J Comput Vis. 1995;15:123–41.

    Article  Google Scholar 

  19. Han Y. Awareness of 3-D pose trajectory in video contents with optimal control refinement. IEEE J Emerg Sel Top Circuits Syst. 2014;4(1):118–29.

    Article  Google Scholar 

  20. Wokes DS, Palmer PL. Heuristic pose estimation of a passive target using a global model. J Guid Control Dyn. 2011;34(1):293–9.

    Article  Google Scholar 

  21. Faugeras O, Lustman F. Motion and structure from motion in a piecewise planar environment. Int J Pattern Recognit Artif Intell. 1988;2(3):485–508.

    Article  Google Scholar 

  22. Huang TS, Faugeras OD. Some properties of the E matrix in two-view motion estimation. IEEE Trans Pattern Anal Mach Intell. 1989;11(12):1310–2.

    Article  Google Scholar 

  23. Broida TJ, Shandrashekhar S, Chellappa R. Recursion 3-D motion estimation from a monocular image sequence. IEEE Trans Pattern Anal Mach Intell. 1990;26(4):639–56.

    Google Scholar 

  24. Chiuso A, Favaro P, Hailin J, Soatto S. Structure from motion causally integrated over time. IEEE Trans Pattern Anal Mach Intell. 2002;24(4):523–35.

    Article  Google Scholar 

  25. Jeong HK, Eun HS, Ln JH. 6 Degree-of-freedom motion estimation of a moving target using monocular image sequences. IEEE Trans Aerosp Electron Syst. 2013;49(4):2818–27.

    Article  Google Scholar 

  26. Liu T, Mei X. An implementation of target motion estimation based on target edge segment features for vehicle monitoring applications. Image Signal Process. 2008;4:166–70.

    Google Scholar 

  27. Guo ZW, Li ZY, Zhang D. Research on pose estimation method for cooperative target based on monocular images. In: Proceedings of IEEE conference industrial electronics and applications; 2011. p. 547–52.

  28. Gu Z, Zhai H, Chen L. Differential correction applications to the estimation of non-cooperate targets motion. In: Proceedings of the international symposium on intelligent information technology application workshop; 2008. p. 1005–08.

  29. Xu W, Xue Q, Liu H, Du X, Liang B. A pose measurement method of a non-cooperative GEO spacecraft based on stereo vision. In: Proceesdings of the international conference on control, automation, robotics and vision; 2012. p. 966–71.

  30. Xu WF, Liang B, Li C, Xu YS. Autonomous rendezvous and robotic capturing of non-cooperative target in space. Robotica. 2010;28(5):705–18.

    Article  Google Scholar 

  31. Xu WF, Liang B, Li B, Xu YS. A universal on-orbit servicing system used in the geostationary orbit. Adv Space Res. 2011;48(1):95–119.

    Article  Google Scholar 

  32. Larouche BP, Zhu ZH. Autonomous robotic capture of non-cooperative target using visual servoing and motion predictive control. Auton Robots. 2014;37(2):157–67.

    Article  Google Scholar 

  33. Ullman S. The interpretation of structure from motion. Proc R Soc Lond. 1979;B203:405–26.

    Article  Google Scholar 

  34. Dryanovski I, Valenti RG, Xiao J. Fast visual odometry and mapping from RGB-D data. In: Proceedings of IEEE international conference on control and automation; 2013. p. 2305–10.

  35. Moreno-Noguer F, Lepetit V, Fua P. Accurate non-iterative O(n) solution to the PnP problem. In: Proceedings of IEEE international conference on computer vision; 2007. p. 1–8.

  36. Lowe D. Distinctive image features from scale-invariant keypoints. Int J Comput Visi. 2004;60(2):91–110.

    Article  Google Scholar 

  37. Comaniciu D, Meer P. Mean shift analysis and applications. In: Proceedings of IEEE international conference on computer vision; 1999. p. 1197–1203.

  38. Luis F, Xavier B, Francesc MN. Very fast solution to the PnP problem with algebraic outlier rejection. In: Proceedings of IEEE international conference on computer vision pattern recognition; 2014. p. 501–8.

Download references

Acknowledgments

This work is jointly supported by the National Natural Science Foundation of China (Grants Nos. 61174103, 91120011, 61210013, 61272357), the National Key Technologies R&D Program of China (Grant No. 2015BAK38B01), and the Aerospace Science Foundation of China (Grant No. 2014ZA74001). The authors would like to thank the editors and the anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Luo, X., Liu, H. et al. Cognitively Inspired 6D Motion Estimation of a Noncooperative Target Using Monocular RGB-D Images. Cogn Comput 8, 105–113 (2016). https://doi.org/10.1007/s12559-015-9345-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-015-9345-9

Keywords