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Abstract—As an important tool for protecting multimedia contents, scrambling and randomizing of original messages is used in 

generating digital watermark for satisfying security requirements. Based on the neural perception of high-dimensional data, compressed 

sensing (CS) is proposed as a new technique in watermarking for improved security and reduced computational complexity. In our 

proposed methodology, watermark signal is extracted from the CS of the Hadamard measurement matrix. Through construction of the 

scramble block Hadamard matrix utilizing a cryptographic key, encrypting the watermark signal in CS domain is achieved without any 

additional computation required. The extensive experiments have shown that the neural inspired CS mechanism can generate watermark 

signal of higher security, yet it still maintains a better trade-off between in transparency and robustness. 

 

Index Terms— Cognitive computation; digital watermark; compressive sensing (CS); measurement matrix; discrete cosine transform 

(DCT); scrambled block Hadamard matrix (SBHM). 

 

I. INTRODUCTION 

Digital watermark is an important secret communication technology being developed for multimedia services, where the owner, for 

retrieval only by those authorized, embeds significant amounts of hidden data into a host data source. The hidden data should be 

recoverable even after the host has undergone standard transformations, such as compression and noise [1], [2]. For satisfying the 

security requirements, conventional approaches need have the watermark signal scrambled and randomized before embedding them 

into the host data source. In [3], J. Cox et al. showed a basic implementation in frequency domain, in which a watermark signal 

consists of a spread spectrum (SS) sequence of real numbers nxxX ,,1  , and each value ix is constructed from independent, 

identically distributed (I.I.D.) samples drawn from a Gaussian distribution. To increase the security of the watermark signal, 

G.Voyatzis et al. [4] proposed a type of watermark signal construction method based on chaotic system and cryptography principles 

in the spatial domain. Let X, W and K be three sets, representing digital product to be protected, the watermark signal, and secret 

keys, respectively, the watermark algorithm G can be defined as follows in [4]: 

WKXWTWKRRTG  :,:,          (1) 

Here, R is controlled by a pseudo random generator, and K maps directly to a type of seed of the pseudo random generator, such 

as Logistic mapping. While R is regarded as a chaotic system, K is formed by certain transforms with many initial conditions. Under 

these conditions, the set of K needs to be large enough, and satisfy a uniqueness condition as requested by the watermark signal. Fig. 

1 shows a general process how the image watermark signal is generated. 

As seen in Fig.1, in conventional scheme, for the generation of the image watermark signal, the original watermark image must 

be firstly sampled by using some complete transformations, such as Fourier Transform (FT), discrete cosine transform (DCT), 

discrete wavelet transform (DWT), and singular value decomposition (SVD) [5]. One interesting approach introduced in [6] applies 

DFT on predefined disks rather than image blocks, where the disk centers are determined as the feature points using scale invariant 

feature transform (SIFT). However, block based transform is widely used for its easy implementation.   

Afterwards, all coefficients of the transformed image need be scrambled and encrypted, using approaches such as the Arnold and 

Fibonacci Q method [1]. As the original watermark image needs to be sampled and scrambled by a convolution form of some matrix 

in a nonlinear way, a high degree of data redundancy can be identified in the transformed watermark signal [7]. On one hand, this 

increases the capacity of the embedded watermark signal. On the other hand, the additional hidden information (watermark) to be 

embedded may become difficult or even impossible to be extracted due to the distortion of the transform domain coefficients [8]. 

 

 

 

 

 

 

 

 

Fig.1. Comparison of conventional watermark scheme and our proposed one in the CS-domain. 
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When the dimensionality of the data increases, the task to model and identify statistical relationships between the data patterns 

becomes significantly difficult, and this phenomenon is called the curse of dimensionality [9]. To address this challenge, 

compressed sensing theory (CS) is proposed recently as it helps to achieve centripetal sensing and compression of sparse signals. 

Due to a simple linear measurement step used, it is found that CS is particularly useful in simulating the neural perception 

mechanism of our human brains in effectively dealing with multidimensional data [11-12]. As shown in Fig. 2, the vision system of 

our brain actually contains a multi-stage compressed sensing mechanism. The first stage is from object to optic nerve, where the data 

rate has been reduced from 10
9
 to 10

7
 bits per second (bps) [13-14]. In the next stage of compressed sensing, the date rate has been 

further reduced to 10
2
 bps when it reaches the visual cortex yet still maintains the essential information. This has demonstrated the 

efficacy of sparse coding networks in CS in maximizing the coding efficiency [11, 15, 16]. 

 

 

 

 

Fig. 2. How compressed sensing (CS) has been embedded in our brain when vision perception is achieved.  

 

By applying CS to watermark, it has provided the best trade-off between the security and robustness of watermark signal 

[17-19]. Orsdemir et al [17] found that CS measurement matrix had pseudo-random entries, and could be achieved by using a 

cryptographic key shared between the sender and receiver. In [19], Lu et al proposed a secure image retrieval system through 

random projection in CS domain. As shown in [20] and [21], many signal processing algorithms performed in the CS domain had 

very close performance as those in the original domain. Based on the measurement matrix of CS, Zhao et al. [22] proposed an image 

semi-fragile watermarking algorithm, in which the measurement values of the CS were registered as the zero-watermark signal and 

used to recover the tampered image with the watermark signal. In [23], Zhang et al proposed a novel watermarking scheme, using a 

CS technique to retrieve the coefficients by exploiting the sparseness in the DCT domain. In [24], Wang and Zeng et al. proposed a 

scheme of integrated secure watermark detection and privacy preserving storage in the CS domain, in which multimedia data and the 

watermark signal were presented to the cloud for secure watermark detection in a CS domain to protect the privacy. In our previous 

work [25], based on the CS theory, a spatial domain approach with a deterministic measurement matrix was presented for 

watermarking generation and intraframe tampering detection. However, in this paper we have introduced CS domain Hadamard 

measurement matrix to cope with the sparsity level of the input signals. 

The emerging theory of CS indicates that CS-based watermark models can be used to simplify the acquisition of 

high-dimensional signals that might otherwise be difficult to collect or encode. Rather than collecting an entire ensemble of signal 

samples, CS requires only a small number of random linear measurements, with the number of measurements proportional to the 

sparsity level of the signal. As a result, signal processing or watermarking data-mining in the CS domain is feasible and 

computationally secure under certain conditions.  

Inspired by the theory of CS, a new watermark scheme is introduced in this paper. It is our aim to establish a novel secure 

information hiding system by utilizing the watermark signal measured from the CS Hadamard matrix which can express all features 

of the original watermark signal and possess itself an encryption property from random elements of the Hadamard matrix that 

encryption occurs implicitly in the sensing process-without requiring additional computation. With the proposed CS-domain 

watermark scheme, as compared in Fig. 1, our scheme has several advantages: Firstly, most of the existing watermarking scheme 

paid little attention to security of the watermark signal, while our scheme improves the security. Second, watermarking data-mining 

in the CS domain is feasible with measurement values and posses computationally better transparency under certain statistical 

conditions. Third, with watermarking data measured in received side, original watermark signal can be constructed high probability. 



Zhao and Ren,         Cognitive Computation of Compressed Sensing for Watermark Signal… 

 

3 

The remaining paper is organized as follows: Section II gives some related works for CS. The proposed CS-watermark scheme 

is presented in detail in Section III. Section III discusses dataset description and experimental settings. Comprehensive results and 

discussions are reported in Section IV. Finally Section V concludes the paper. 

II. RELATED WORK FOR THE CS THEORY 

When a signal can be represented by a small number of non-zero coefficients, the CS asserts that it can be perfectly recovered 

after being transformed by a limited number of incoherent, non-adaptive linear measurements [26-28]. Let a signal f∈ NR  be a 

K-sparse vector, i.e. only K out of the N elements of f are nonzero. If f can be transformed to 
MRx  with fx   and NM  , 

  is namely the sparse matrix. For image data   is usually chosen as the DCT and DWT. If   satisfies Restricted Isometry 

Property (RIP) [26-27], the sparse matrix can be obtained by solving the following optimization problem: 

                    fxtsf ..||||min 1                                   (2) 

Actually, this process equals to finding the sparsest solutions to fx  , subject to )/log( KNCM K , where 

)1,0(/  NKCK  is a small constant which denotes the sparsity level of the input signal. The CS theory states that the sparse 

signal x can be reconstructed by using only M linear projection in a non-adaptive measurement as follows: 

                                   fxy                                                (3) 

where y is an M×1 sampled vector, and is an NM   measurement matrix that is incoherent with , i.e., the maximum 

magnitude of the element in  is small. 

In fact, Eq. (2) presents an l1 minimization problem, which can be solved by using the orthogonal matching pursuit algorithm 

[28]. For Eq. (3), if the entries of the matrix   are generated from a Gaussian distribution (zero mean and variance σ),  is a RIP 

matrix with overwhelming probability in [26-27]. The Gaussian CS matrix suits include the seeds and a random function. 

It has been shown that it is feasible for many signal-processing algorithms to be performed in the CS domain [20-25]. In practical 

applications, an image sized of N= 21 NN  is divided generally into B×B blocks. For each block, ideally the size of the 

measurement matrix in CS domain needs be appropriately selected by considering the associated sparsity KC  . That is, assume that 

ix  is a sparse vector representing block i of the input image NMRx M  , . The corresponding measurement sample iy  can be 

decided by  

                                    iBi xy                                                (4) 

where the length of the signal iy  is m , and B is a 
2Bm  measurement matrix. For each image block, the numbers of 

measurement samples can be determined as m=  NBM /2 , where M is size of samples needed by the CS measurement for the 

whole image. In this way,  has a block-diagonal structure as given in (5). Therefore, the overall technique above was called block 

CS (BCS) [29]. 

                          ][ Bdiag                                           (5) 

 

III. THE PROPOSED CS WATERMARK SCHEME 

In this section, detailed algorithm description is given to discuss how the proposed CS domain watermark scheme works in terms 

of signal measurement, measurement matrix construction and security analysis. 

A. The measurement of the watermark signal 

      In the proposed watermark scheme, the original watermark image is firstly divided into same-sized non-overlapping blocks, in 

which blocking criteria of the watermark image is jointly decided by the size and positioning accuracy of the watermark signal as 

requested for extraction and recovery. Next, each block of the watermark image is transformed by a sparse basis matrix in which we 

use DCT as the sparse basis Ψ, and forms various DCT coefficients blocks. Meanwhile, measurement matrix B is deployed to 

sense these DCT coefficients independently within each block. This process is simply a random linear projection, and can be 

achieved by inner product operation of corresponding two elements between Ψ and B . Here, according to the principle of the CS 

theory [26-27], selection of B is incoherent with Ψ. As the sparse basis Ψ is a type of DCT matrix, we can solve the constraint by 

an appropriate measurement matrix B . We will discuss the designing of B  in a later subsection. Finally, the watermark signal 
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wMy  is generated by combining the sampling values from the measurement matrix B of each image block. 

Assume the total numbers of pixels of the original gray watermark image is 
21 NNN  , in which both 1N and 2N  are 

multiples of B, denoting the number of rows and columns, respectively. We segment the watermark image into 
0K  non-overlapped 

B×B pixel blocks, and denote the pixels as ),( jixk
, where 2

0 /1 BNKk   and 1,0  Bji . 

For the kth image block kx , ],1[ 0Kk , its DCT results with 8B  is denoted as k , whose 64 coefficients are rearranged as 

a vector kV  by using a zigzag scanning, i.e.  

T

kkkkV )]7,7(,),1，0(),0，0([                   (6)     

For the re-organized 64 DCT coefficients in kV , they are quantized in a non-uniform manner below to map them into integers 

within [-64, 63]. 

   


























63

1

1

63

)(,64

)(,1

)(,

)(,63

)(

ftVif

ftVfift

ftVfift

ftVif

tQ

k

tkt

tkt

k

k                 (7)     

where 
3006

2tt
ft   with ]63,0[t . 

Let M represent the total size of samples of the watermark signal measured in CS domain, the size of the measurement samples 

for each image block of the original watermark image is  0/ KMm   or  0/ KM . If the measurement samples of block l 

are ),...,2,1)(,（ 0Kljiyl  , measurement samples of each block are then put together to form the watermark signal in the DCT–CS 

domain, as given by 
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     Usually, the elements of wMY  in (8) need be normalized to have ]1,0[Mw where mKM 0 . If an appropriate 

measurement matrix   is selected corresponding to the DCT-based sparse basis Ψ, the measurement samples of the original image 

can represent all features in DCT-CS domain. As a result, we can take the measurement samples as the watermark signal, namely the 

CS-watermark signal in this paper. In other words, the CS-watermark signal shows inherent characteristics of the watermarking 

image by measurement samples, and the size of watermark signal M is far less than N, the length of the original watermark image. 

Consequently, the basis Ψ provides a M sparse representation of signal x (M<<N).   

B. Construction of measurement matrix 

Construction of the measurement matrix   in (5) and (11) is the most important factor in generating the CS-watermark signal. 

Cands et al. [28] have proved that Gaussian random matrix satisfied the RIP requirement under statistical condition. However, 

storage and transmission of this kind of matrix needs huge memory requirement and high computational complexity. For other 

options of deterministic measurement matrix, we have come over polynomial matrix [25], discrete Chirp matrix and Reed-muller 

codes matrix [30]. Unfortunately, the operators of these matrixes are not universal as they are only incoherent with the identity 

matrix.  

Considering the security requirement of the information hiding with the robust CS-watermark signal, in this paper, we have 

proposed a new sampling operator called scrambled block Hadamard matrix (SBHM). In SBHM,   employs the partial block 

Hadamard transform and randomly permute its columns, hence we have a form of   as follows 

                                 NNMM VU Φ                                             (9) 
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where the matrix NM is a block diagonal matrix as in (4). Actually, NM  represents the set of the block Hadamard matrix 

(BHM) B , where MU  is an operator which picks up M rows of NM  at random, and NV denotes a scrambling operator which 

randomly records the N columns of NM . For satisfying the incoherent of   and Ψ, we compile a wish-list to show the 

construction criteria of . 

● Near optimal performance: The number of measurements for perfect reconstruction is close to the theoretic bound. 

● Universality:  can be paired with a variety of sparse basis matrix Ψ for natural watermark images. 

● Security: each element of  has scrambling and random coefficient, and is asymptotically normally distributed with zero 

mean and variance of 
1N . 

Based on the criteria above, we map the elements of the BHM NM  in Sylvester's form using the group homomorphism 

}1{0}1-{1  ，，，，   as follows. Consider a rank n matrix nH  sized of 
nn 2 , whose columns consist of all n-bit numbers 

ascendingly arranged. Sylvester's Hadamard matrix nH  can then be recursively defined by 
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 
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]1,0[
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nn                                         (10) 

It can be inducted that the image of the Hadamard matrix above satisfies 

                                  n
T
n HHH n 2

                                                (11) 

When 
nB 2 , we can obtain a form of BHM NM  as  

                       nHdiagdiag BNM 2
                  (12) 

This construction process shows that the rows of the BHM NM  can be viewed as a linear error-correcting code of rank n 

(with a length 
n2 ), and the minimum distance 

1-2n
 with the generating matrix nH . In addition, it is obvious that small B is 

advantageous for computational and storage efficiency. The bound of B can be further improved, as B can be actually very small 

( 164424 B ) for image watermarking.  

 Besides, the block diagonal structure of NM  enables its fast and parallel measurement at a complexity )log( BNO  along 

with small memory requirement [29]. In addition, based on the combinatorial central limit theorem, we can even prove that, for the 

  given in (9) and a sparse basis Ψ based-DCT, let  f
, each element ),( jif  is asymptotically normally distributed with 

zero mean and variance of 
1N .  

After determining NM , for data security purpose, each element of the matrix needs to be scrambled. The sparse input signal 

sampled from the original image kV  is pseudo-randomly permuted in a chaotic way so that   is incoherent with Ψ based-DCT. 

However, in practice, for limited computational complexity, NV  cannot be selected as a pure random operator. Here, we will 

consider the method of linear congruential permutation (LCP) [18], which is a simple pixel level scrambler.  

For an input vector ),( vuVk , it outputs are determined as follows, where again ],1[ 0Kk  denotes the number of blocks: 

),(),( vuVn k
VvuV  , 7,0  vu                     (13) 

64],64mod),([),（  AvuAvuVk                     (14) 

where A is a positive integer relative prime with N. Therefore, NV  ( ],0[ 0KN ) can be restructured by  

T

nN vuVvuVvuVV )],(),...,,(),,([ 21                   (15) 

where n  denotes the total number of re-ordered coefficients obtained from all image blocks.   

Because there is only one parameter A in (14), an LCP can be easily implemented for pixel-by-pixel scrambling. In addition, as 

MU is an operator from M rows of NNM V uniform at random in (9), we can save nH , MU  and NV  as secret keys S with small 

memory requirement. This set of secret keys will further be applied to extract the CS-watermark signal at the receiver side. 



Zhao and Ren,         Cognitive Computation of Compressed Sensing for Watermark Signal… 

 

6 

      Based on the analysis above, with the support of CS theory, the CS-watermark signal is generated. The time complexity of the 

CS-watermark signal depends on the size of the measurement matrix . For each DCT block of the original watermark image, the 

time complexity for feature extraction is )( 2mBO  and thus the total time complexity for the whole image is )(mNO . 

C. Security analysis of the CS-watermark signal 

In the proposed scheme, measurement of CS technique itself is an encryption that occurs implicitly in the sensing process. This 

can provide an effective security of compression and encryption for the watermark signal, where the encryption does not need any 

extra computational cost. In the encryption process, measurements matrix of CS may be regarded as a realization form of secure and 

reliable keys. In [31], Y. Rachlin et al. proved that if an attack did not have a priori knowledge of the measurement matrix, it could 

only try all possible keys by using some exhaustive algorithms. This is a NP-hard problem, which is almost impossible to be solved. 

Therefore, security of the CS-watermark signal can be decided by the encryption property of the CS measurement matrix, in which 

random elements of the measurement matrix decide the measurement values property with random noise.  

In addition, we can also show the security of the CS-watermarking from the signal detection point of view as detailed below. For 

(3), if data x is attacked by operation x  in CS domain, we have xxx 


. Thus, the measurement values of matrix   will be 

changed correspondingly as    

                            yyxxxy 


                         (16) 

It is obvious from (3) and (16), we obtain 

                                        xy                                                      (17) 

As can be seen, after the original data are changed by the attack operation, the measurement difference values of CS are the 

projection y  of x  on the matrix . For simplicity, assume the original data x is only changed in a pixel, that is only a nonzero 

elements in x  

                              ]0,...,,...,0,0[ fxx                                               (18) 

Then, y modified by the measurement values of a block matrix
B becomes  
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where
BBhhh ,...,, 1211

denote each element of the Hadamard matrix. Then, the ith element in 
iy can be represented as  

                                   ixfi hxy                                                     (20) 

From (19) and (20), it can be clearly observed that, local modification from the original signal would cause the global 

modification by measurements matrix of CS. We use a squared Euclidean distance D as the security standard between the original 

data and the attacked one below   
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That is, the smaller fx  is, the less D is, and the higher the security of the signal extracted becomes. Correspondingly, when 

fx  increases, D will become larger, and the security will be rapidly reduced. In our proposed method, as the CS-watermark signal 

executes some general signal process operations (i.e., DCT, DWT, SVD, and Hadamard transform), modification of fx  is usually 

small. Therefore, modification of D remains insignificant. If the CS-watermark signal is attacked by some unauthorized operations, 

the value fx  of the CS-watermarked signal will be rapidly increased, the D  will be exponentially changed. Accordingly, the value 

D will also cause global distortion of measurement values in CS domain. Therefore, meaningful hidden messages are unable to be 

recovered by the attackers at the receiver side. As an information hiding result, the CS-watermark signal will be still secured in our 

proposed scheme.  
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IV. DATASETS AND EXPERIMENTAL SETTINGS 

To test the security and robustness of the proposed CS-watermark scheme, we have applied the scheme for information hiding in 

videos with the experiment system shown in Fig. 3. Firstly, we take four consecutive frames as a group, and each frame within a 

group is divided into blocks. Then, according to the Huang’s algorithm [32], the DC value of each block located in the same position 

of successive frames within a group is transformed into the DCT domain. As there are four frames in a group, the second DCT 

actually contains four elements, one DC and three AC coefficients. Afterwards, we embed the CS-watermark signal into these AC 

values by using QIM (Quantization Index Modulation) [33]. Finally, after the watermarked video streams are transmitted in noise 

channel, we can extract the watermark signal by a cryptographic key of the measurement matrix shared between the sender and 

receiver.  

      The description of the datasets and the experimental settings are discussed in detail as follows.  

A. Datasets used 

In our experiments, the original watermark image, is obtained from a real gray level fingerprint from the FVC2004 database 

(DB3) with a size 160×160 [34]. The fingerprint image is then processed by a sparse basis Ψ based DCT. Finally, we obtain the 

CS-watermark signal of the fingerprint image by block Hadamard matrix   combining (11) and (15). The original fingerprint 

image and the measurement samples with various sizes are illustrated in Fig. 4, where the measurement samples from CS have 

clearly shown some random properties.  

 

 (a)                  (b) 

 (c)                   (d) 

Fig. 4. Original fingerprint image (160×160) (a) and three measurement samples sized of 100×100 (b), 80×80 (c), and 80×100 (d), respectively. 

 

Three well-known video sequences, Basketball, Scene and Mobile, are used in our experiments for CS-watermark signal 

embedding. The frame size of these videos is 720×480, and each sequence contains 80 frames. For each video, one representative 

frame is shown in Fig. 5 for information.  

 

   
Fig.5. Three test videos: Basketball (left), Scene (middle) and Mobile (right). 

 

As we take four successive frames as a group, there are 20 groups from 80 frames. For the 6400 bits within the watermark signal, 

we embed 640 bits in each image group. As a result, 10 groups of images are needed for the watermark signal, and the watermark 

signal is embedded twice in the 20 groups of frames. In addition, we divide each frame into 8×8 blocks, and embed 640bits 

watermark data into the 160 AC coefficients of middle-frequency selected by using Huang’s algorithm [32].  
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Fig. 3. A video information hiding experiment system with the CS-watermark signal. 
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B. Evaluation criteria 

In information hiding systems, the transparency and the robustness are usually used for performance assessment [22], and [25]. 

For transparency, we use the peak signal-to-noise ratio (PSNR) as a criterion to estimate the invisibility of the embedded watermark 

signal. The PSNR can judge the received image quality by comparing the degree of diversity between the received image and the 

original one. The PSNR, derived from the mean square error (MSE), is defined as follows. 

  

 



h wI

i

I

jwh jiHjiHIIMSE

MSE

H
PSNR

1 1

2

21

1

max

|),(),(|)(

log20

         (22) 

where 
maxH  is 255 for a gray-level image; ),(1 jiH  and ),(2 jiH  denote the received image and the original image corresponding 

to i and j coordinates in 2D space. 
hI  and 

wI  denote the height and width of the image, respectively. 

Robustness is also one important metrics for performances measurement in watermarking. In our experiment, the normalized 

correlation (NC) is used for calculating the difference between the extracted watermark signal ),( jiW


 at the receiver side and the 

original watermark signal ),( jiW  at the sender side as defined below  

 
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

1 2

1 2

1 1
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1 1

)],([

),(),(
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N

j

N

i

N

j

jiW

jiWjiW
NC



                  (23) 

where 
1N  and 

2N  denote the height and width of the original watermark image (fingerprint), respectively.  

According to the measurement samples in Fig. 4, extracted fingerprint images using the BCS-SPL algorithm [29] are given in 

Fig. 6. As can be seen, the original fingerprint image can be successfully recovered in high quality, though larger sampled image 

produces slightly higher quality image indicated by the obtained PSNR values. To test the robustness of our proposed watermark 

scheme, the size of the watermark signal in our experiment is chosen as M=80×80 or 6400 bits. 

 

(a)   (b)   (c) 
Fig. 6. Recovered fingerprint images with CS watermark signal by BCS-SPL. (a) PSNR=66.32dB (measurement samples of size 80×80), (b) PSNR=69.93dB (80

×100), (c) PSNR=70.18dB (100×100). 

V. RESULTS AND DISCUSSIONS 

Under the aforementioned experimental settings, the abovementioned three video sequences are used for performance 

measurement and evaluation. The results from our proposed approach have been compared with the methods from Huang [32] and 

Kong [35]. These approaches are selected as they represent two groups of typical algorithms performed in the spatial domain and 

SVD domain, respectively. Various attacks including MPEG and H.264 compression, noise contamination and filtering are used for 

performance assessment. Comprehensive results are reported and discussed as detailed below.  

A. Transparency measurement 

After embedding the fingerprint-based watermark signal into every 40 frames of the video sequence, the PSNR of the resulted 

sequences are calculated to measure the transparency of the proposed CS watermark signal scheme. For each sequence, the PSNR 

values over 80 frames are illustrated in Fig. 7, in benchmarking with Huang [32] and Kong [35].  
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Fig. 7. Comparison of transparency of our watermark scheme and those in [32] and [35] using PSNR of the watermarked videos from the three sequences. 

 

As can be seen, our approach has generated the highest PSNR values, 50-60dB, among the three. Kong’s approach [35], on 

average, produces the worse results in this group of experiments. This has indicated that our method causes very slight distortion to 

the video signal and simultaneously provides high visual quality of the watermarked videos. Thanks to the proposed CS-watermark 

scheme, we only need 25% of samples for embedding as requested in [32] and [35]. This has explained the high transparency of our 

CS-watermark methodology.  

B. Robustness measurement 

The robustness of the proposed CS-watermark scheme has been tested with different attacks, including compression, filtering, 

noise and collusion. Relevant results are reported in detail below.  

i) Compression attack: To evaluate the robustness of the watermark scheme under different compression attacks, MPEG-1, 

MPEG-2 and H.264 codecs are employed. For MPEG-1 and MPEG-2, the bit rate used is within 0.5-5Mbps in 10 levels. For H.264, 

due to it is designed for low bit rate applications, we can only manage have the bit rate changed within 0.5-2Mbps. For the video 

sequences compressed using the three approaches above, the acquired NC values under different bit rates are plotted in Figs. 8-11, 

respectively.  
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Fig. 8. NC-based robustness comparison under different MPEG-1 bit rates. 

 

As can be seen, our approach significantly outperforms the other two in these three figures in terms of high NC values achieved 

and consistency of NC when the bit rate varies. The larger the NC value is, the better the robustness of the information hiding system 

is. This has indicated that the proposed approach is extremely robust to the three commonly used compression attacks. On the 



Zhao and Ren,         Cognitive Computation of Compressed Sensing for Watermark Signal… 

 

10 

contrary, the two benchmarking approaches have produced much lower NC values, which are inevitably affected by the changing of 

bit rate.  
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Fig.9. NC-based robustness comparison under different MPEG-2 bit rates. 
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Fig.10. NC-based robustness comparison under different H.264 bit rates. 

ii) Filtering attacks: To further assess the robustness of the proposed CS-watermark scheme, we consider also various intentional 

or unintentional attacks, such as 2-D 3×3 Wiener and median filtering. The results are compared in Figs. 11-12 below.  

When Wiener and median filtering are respectively applied to the watermarked video frames, the detected watermark signal is 

affected by the degraded images. As such, the NC values for the two benchmarking approaches have declined to 0.5-0.7. However, 
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our proposed approach can always maintain a high NC value over 0.997. This again has validated the robustness of the proposed 

CS-watermark scheme. 

 

 

        

      

      

Fig.11. Wiener filtering attack results for the Basketball (top), Scene (middle) and Mobile (bottom) videos. In each row, the three images (left-right) are from our 

approach, Huang [32] and Kong [35] with NC values of (1.0, 0.682, 0.573), (0.998, 0.661, 0.552), and (0.997, 0.626, 0.508), respectively. 

 

      

      

      

Fig.12. Median filtering attack results for the Basketball (top), Scene (middle) and Mobile (bottom) videos. In each row, the three images (left-right) are from our 

approach, Huang [32] and Kong [35] with NC values of (0.998, 0.623, 0.503), (0.999, 0.718, 0.559), and (0.997, 0.709, 0.602), respectively. 

iii) Noise attacks: To further validate the robustness of the proposed approach, Gaussian (zero-mean with a variance of 0.05) and 

“pepper & salt” noise (with a density of 0.1) are used to attack the watermarked videos. The attached images are shown in Fig. 13 to 

indicate the severity of the noise introduced. The associated results are compared in Figs. 14-15 below. 

When Gaussian and Pepper & Salt noise are respectively applied to the watermarked video frames, the detected watermark signal 

is also affected by the degraded images (see in Fig. 13). As such, the NC values for the two benchmarking approaches have declined 

to 0.6-0.9. However, our proposed approach can always maintain a high NC value no less than 0.999. This again has validated the 

robustness of the proposed CS-watermark scheme. 
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Fig. 13. Noise attached Basketball (top), Scene (middle) and Mobile (bottom) sequences using Gaussian (left) and Pepper & salt (right) noise, respectively. 
 

       

       

      
Fig.14. Result against Gaussian noise attacked videos for Basketball (top), Scene (middle) and mobile (bottom). In each row, the three images (left-right) are from 

our approach, Huang [32] and Kong [35] with NC values of (1.0, 0.732, 0.611), (1.0, 0.750, 0.682), and (1.0, 0.896, 0.702), respectively. 

iii) Collusion attack: Collusion is one of the most common attacks in video information hiding [2], where the hidden watermark 

signal can be removed after it has been successfully identified by the attacker. Here, the robustness of the proposed method against 

this type of attack is assessed.  

First, we embedded only one watermark image into 80 frames in video streams, and an attempt was made to obtain an estimate 

of the watermark by averaging the 80 frames directly. Fig. 16 shows the relevant results, which has indicated that the proposed 

CS-watermark signal cannot be easily estimated than those from Huang [32] and Kong [35]. For the two benchmarking approaches, 

the watermark signal has been removed when the colluded frames reaches 45-68. While for our approach, the watermark signal can 

still survive, with an NC value over 80%, even if all the 80 frames have been colluded. 
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Fig.15. Result against Pepper & salt noise attacked videos for Basketball (top), Scene (middle) and mobile (bottom). In each row, the three images (left-right) are 

from our approach, Huang [30] and Kong [31] with NC values of (1.0, 0.761, 0.655), (1.0, 0.763, 0.631), and (0.999, 0.783, 0.642), respectively. 
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Fig. 16. Comparison results after collusion attack. 

 

The proposed CS-watermark scheme benefits from two key factors, i.e. much less measurement samples required, and 

asymptotically normally distributed samples (ANDS). Usually, attackers may take advantage of the motionless regions in successive 

frames to remove the watermark signal. Although the identical watermark image is used within all frames, ANDS has prevented 

attackers from removing the watermark signal by averaging the frames. In the other words, attackers cannot estimate the 

CS-watermark signal by statistical averaging and remove it from our proposed CS-watermarked video. As a result, the resistance to 

collusion attacks has been significantly enhanced. 

C. The influence of key parameters 

In this part, how the key parameters of the proposed CS-watermark scheme may affect the quality of the resulted images is 

discussed. Under different parameters in terms of payloads, CS watermark sizes and the proportion of changed pixels, the image 

quality is measured using PSNR with results shown in Table I and Table II for comparison. These are results for the three test videos, 

Basketball, Scene and Mobile. 

 
TABLE I  

AVERAGE PSNR (dB) FOR THREE TEST VIDEOS WITH VARYING  

CS-WATERMARK SIZES 
Mw  AND PAYLOADS (EMBED 1

Mw /FRAMES) 

Payloads 
Ratios of 

Mw  

0.25 1 4 9 16 25 

Results for the Basketball Sequence 

20 58.82 55.61 50.06 49.54 47.86 38.95 

40 61.42 56.95 53.58 51.91 49.18 48.92 

60 63.18 58.34 55.09 53.95 52.11 50.08 

80 65.98 63.26 60.62 58.97 56.86 55.81 

Results for the Scene Sequence 

20 57.69 55.12 49.96 49.85 49.72 40.58 

40 61.01 57.86 55.56 51.81 50.82 49.62 

60 62.98 58.42 54.89 53.91 52.97 51.42 
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80 67.75 63.18 60.22 58.16 56.13 55.89 

Results for the Mobile Sequence 

20 58.62 55.42 49.66 48.94 45.69 39.45 

40 62.40 56.44 53.28 51.11 47.19 46.82 

60 64.06 58.02 55.04 53.81 51.97 50.01 

80 66.75 63.15 60.12 58.75 56.11 54.93 

 
TABLE II  

AVERAGE PSNR (dB) FOR THREE TEST VIDEOS WITH VARYING  

CS-WATERMARK SIZES 
Mw  AND PIXEL RATIOS 

Ratio of black 

or changed 

pixels % 

Ratios of 
Mw  

0.25 1 4 9 16 25 

Results for the Basketball Sequence 

0.01 56.29 52.02 50.61 46.28 43.09 38.35 

0.25 61.01 55.12 53.18 50.12 45.17 40.96 

0.5 63.14 56.92 54.81 52.19 49.92 42.76 

0.75 65.25 62.11 58.23 52.66 54.19 44.13 

1.0 67.82 67.72 61.07 52.18 52.59 45.93 

Results for the Scene Sequence 

0.01 55.32 52.82 51.39 47.72 44.13 39.37 

0.25 60.98 55.87 53.91 50.86 46.14 44.93 

0.5 63.94 56.82 54.95 52.87 50.86 50.71 

0.75 65.16 62.91 60.29 57.67 55.49 52.03 

1.0 66.65 65.29 62.87 59.11 56.57 55.82 

Results for the Mobile Sequence 

0.01 58.24 53.92 52.41 46.88 45.44 39.85 

0.25 61.81 55.96 53.98 49.72 44.16 43.86 

0.5 63.85 57.12 54.72 50.28 45.98 44.86 

0.75 65.19 61.92 59.13 53.46 54.13 42.73 

1.0 68.50 66.71 65.04 54.88 53.58 50.96 

 

With the increasing of watermark size, the image quality decreases accordingly as indicated by the achieved PSNR values in 

Tables I-II. For a given CS watermark size, increasing payloads or ratio of changed pixels can generally help to produce higher 

PSNR values, i.e. improved image quality. However, there are exceptional cases for the Mobile sequence in Table II, where 

increased pixel ratios sometimes cannot yield improved PSNR values, especially when the watermark size is larger, say 16 and 25. 

The inconsistency is mainly due to the complicity of the scene.  

VI. CONCLUSIONS 

In this paper, based on the neural perception mechanism of our human brains in dealing with multidimensional data, a novel 

cognitive computation based CS-watermark approach is proposed for information hiding inside videos. As the CS-watermark signal 

is generated by measurement values of the scramble block Hadamard matrix, all features of the original watermark image can be 

represented. Accordingly, this naturally possesses an encryption property from random elements of measurement matrix where 

encryption occurs implicitly in the sensing process-without requiring additional computation. As a result, the CS-watermark signal 

is computationally simple, and has higher security than traditional methods achieved by extra scrambling and random processing in 

information hiding field. In addition, as only a small amount of the watermark data needs be embedded into the video, the proposed 

data hiding approach can effectively resist compressions, noise and filtering attacks and still maintain a better performance in terms 

of transparency and robustness. This has shown the great potential of applying CS-based cognitive computation in this emerging 

topic. Future works include combining machine-learning based data hiding analysis approaches such as extreme learning machine 

[38] and sparse representation based measurement matrix reconstruction [39] to further improve the security and robustness of data 

hiding. 
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