Skip to main content

Advertisement

Log in

Deep Belief Networks for Quantitative Analysis of a Gold Immunochromatographic Strip

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Gold immunochromatographic strip (GICS) has become a popular membrane-based diagnostic tool in a variety of settings due to its sensitivity, simplicity and rapidness. This paper aimed to develop a framework of automatic image inspection to further improve the sensitivity as well as the quantitative performance of the GICS systems. As one of the latest methodologies in machine learning, the deep belief network (DBN) is applied, for the first time, to quantitative analysis of GICS images with hope to segment the test and control lines with a high accuracy. It is remarkable that the exploited DBN is capable of simultaneously learning three proposed features including intensity, distance and difference to distinguish the test and control lines from the region of interest that are obtained by preprocessing the GICS images. Several indices are proposed to evaluate the proposed method. The experiment results show the feasibility and effectiveness of the DBN in the sense that it provides a robust image processing methodology for quantitative analysis of GICS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chuang L, Hwang J, Chang H, Chang F, Jong SH. Rapid and simple quantitative measurement of \(\alpha \)-fetoprotein by combining immunochromatographic strip test and artificial neural network image analysis system. Clin Chim Acta. 2004;348:87–93.

    Article  CAS  PubMed  Google Scholar 

  2. Ding D, Wang Z, Shen B, Wei G. Event-triggered consensus control for discrete-time stochastic multi-agent systems: the input-to-state stability in probability. Automatica. 2015;62:284–91.

    Article  Google Scholar 

  3. Ding D, Wang Z, Lam J, Shen B. Finite-horizon \(H_{\infty }\) control for discrete time-varying systems with randomly occurring nonlinearities and fading measurements. IEEE Trans Autom Control. 2015;60(9):2488–93.

    Article  Google Scholar 

  4. Ding D, Wang Z, Shen B, Dong H. \(H_{\infty }\) state estimation with fading measurements, randomly varying nonlinearities and probabilistic distributed delays. Int J Robust Nonlinear Control. 2015;25(13):2180–95.

    Google Scholar 

  5. Faulstich K, Gruler R, Eberhard M, Haberstroh K. Developing rapid mobile POC systems. Part 1: devices and applications for lateral-flow immunodiagnostics. IVD Technol. 2007;13(6):47–53.

    Google Scholar 

  6. Hamel P, Eck D. Learning features from music audio with deep belief networks. In: 11th international society for music information retrieval conference; 2010. p. 339–44

  7. Hinton G. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002;14(8):1771–800.

    Article  PubMed  Google Scholar 

  8. Hinton G, Deng L, Yu D, Dahl G, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath T, Kingsbury B. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag. 2012;29(6):82–97.

    Article  Google Scholar 

  9. Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–7.

    Article  CAS  PubMed  Google Scholar 

  10. Hou N, Dong H, Wang Z, Ren W, Alsaadi FE. Non-fragile state estimation for discrete Markovian jumping neural networks. Neurocomputing. 2016;179:238–45.

    Article  Google Scholar 

  11. Huang L, Zhang Y, Xie Ch, Qu J, Huang H, Wang X. Research of reflectance photometer based on optical absorption. Int J Light Electron Opt. 2010;121(19):1725–8.

    Article  CAS  Google Scholar 

  12. Kaur J, Singh K, Boro R, Thampi K, Raje M, Varshney G. Immunochromatographic dipstick assay format using gold nanoparticles labeled protein-hapten conjugate for the detection of atrazine. Environ Sci Technol. 2007;41(14):5028–36.

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Ouellette A, Giovangrandi L, Cooper D, Ricco A, Kovacs G. Optical scanner for immunoassays with up-converting phosphorescent labels. IEEE Trans Biomed Eng. 2008;55(5):1560–71.

    Article  PubMed  Google Scholar 

  14. Li D, Wei S, Yang H, Li Y, Deng A. A sensitive immunochromatographic assay using colloidal gold-antibody probe for rapid detection of pharmaceutical indomethacin in water samples. Biosens Bioelectron. 2009;24(7):2277–80.

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Zeng N, Du M. A novel image methodology for interpretation of gold immunochromatographic strip. J Comput. 2011;6(3):540–7.

    Google Scholar 

  16. Lin C, Wu C, Hsu H, Li K, Lin L. Rapid bio-test strips reader with image processing technology. Optik. 2004;115(8):363–9.

    Article  CAS  Google Scholar 

  17. Liu Y, Alsaadi FE, Yin X, Wang Y. Robust \(H_{\infty }\) filtering for discrete nonlinear delayed stochastic systems with missing measurements and randomly occurring nonlinearities. Int J Gen Syst. 2015;44(2):169–81.

    Article  Google Scholar 

  18. Luo Y, Wei G, Liu Y, Ding X. Reliable \(H_{\infty }\) state estimation for 2-D discrete systems with infinite distributed delays and incomplete observations. Int J Gen Syst. 2015;44(2):155–68.

    Article  Google Scholar 

  19. Mohamed A, Dahl G, Hinton G. Acoustic modeling using deep belief networks. IEEE Trans Audio Speech Lang Process. 2012;20(1):14–22.

    Article  Google Scholar 

  20. Mohamed A, Sainath T, Dahl G, Ramabhadran B, Hinton G, Picheny M. Deep belief networks using discriminative features for phone recognition. In: 2011 IEEE international conference on acoustics, speech and signal processing; 2011. p. 5060–63

  21. Posthuma-Trumpie GA, Korf J, van Amerongen A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem. 2009;393(2):569–82.

    Article  CAS  PubMed  Google Scholar 

  22. Qian S, Haim H. A mathematical model of lateral flow bioreactions applied to sandwich assays. Anal Biochem. 2003;322(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  23. Qian S, Haim H. Analysis of lateral flow biodetectors: competitive format. Anal Biochem. 2004;326(2):211–24.

    Article  CAS  PubMed  Google Scholar 

  24. Raphael C, Harley Y. Lateral flow immunoassay. New York City: Humana Press; 2008.

    Google Scholar 

  25. Srivastava R, Cheng J, Wong D, Liu J. Using deep learning for robustness to parapapillary atrophy in optic disc segmentation. In: 2015 IEEE 12th international symposium on biomedical imaging; 2015. p. 768–71.

  26. Sumonphan E, Auephanwiriyakul S, Theera-Umpon N. Interpretation of nevirapine concentration from immunochromatographic strip test using support vector regression. In: Proceedings of 2008 IEEE international conference on mechatronics and automation; 2008. p. 633–7.

  27. Tanaka R, Yuhi T, Nagatani N, Endo T, Kerman K, Takamura Y. A novel enhancement assay for immunochromatographic test strips using gold nanoparticles. Anal Bioanal Chem. 2006;385(8):1414–20.

    Article  CAS  PubMed  Google Scholar 

  28. Wei H, Dong Z. V4 neural network model for shape-based feature extraction and object discrimination. Cogn Comput. 2015;7(6):753–62.

    Article  Google Scholar 

  29. Wei H, Li H. Shape description and recognition method inspired by the primary visual cortex. Cogn Comput. 2014;6(2):164–74.

    Article  Google Scholar 

  30. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH. Microfuidic diagnostic technologies for global public health. Nature. 2006;442:412–8.

    Article  CAS  PubMed  Google Scholar 

  31. Yang H, Wang Z, Shu H, Alsaadi FE, Hayat T. Almost sure \(H_{\infty }\) sliding mode control for nonlinear stochastic systems with Markovian switching and time-delays. Neurocomputing. 2016;175:392–400.

    Article  Google Scholar 

  32. Yu Y, Dong H, Wang Z, Ren W, Alsaadi FE. Design of non-fragile state estimators for discrete time-delayed neural networks with parameter uncertainties. Neurocomputing. 2016;182:18–24.

    Article  Google Scholar 

  33. Yu D, Deng L. Deep learning and its applications to signal and information processing. IEEE Signal Process Mag. 2011;28(1):145–54.

    Article  CAS  Google Scholar 

  34. Zeng N, Wang Z, Li Y, Du M, Liu X. Inference of nonlinear state-space models for sandwich-type lateral flow immunoassay using extended Kalman filtering. IEEE Trans Biomed Eng. 2011;58(7):1959–66.

    Article  PubMed  Google Scholar 

  35. Zeng N, Wang Z, Li Y, Du M, Liu X. A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of lateral flow immunoassay models. IEEE/ACM Trans Comput Biol Bioinf. 2012;9(2):321–9.

    Article  Google Scholar 

  36. Zeng N, Wang Z, Li Y, Du M, Liu X. Identification of nonlinear lateral flow immunoassay state-space models via particle filter approach. IEEE Trans Nanotechnol. 2012;11(2):321–7.

    Article  Google Scholar 

  37. Zeng N, Wang Z, Li Y, Du M. Cellular neural networks for gold immunochromatographic strip image segmentation. Lect Notes Comput Sci. 2012;7231:110–20.

    Article  Google Scholar 

  38. Zeng N, Wang Z, Li Y, Du M, Cao J, Liu X. Time series modeling of nano-gold immunochromatographic assay via expectation maximization algorithm. IEEE Trans Biomed Eng. 2013;60(12):3418–24.

    Article  PubMed  Google Scholar 

  39. Zeng N, Hung YS, Li Y, Du M. A novel switching local evolutionary PSO for quantitative analysis of lateral flow immunoassay. Expert Syst Appl. 2014;41(4):1708–15.

    Article  Google Scholar 

  40. Zeng N, Wang Z, Zineddin B, Li Y, Du M, Xiao L, Liu X, Young T. Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach. IEEE Trans Med Imaging. 2014;33(5):1129–36.

    Article  PubMed  Google Scholar 

  41. Zeng N, Wang Z, Zhang H, Alsaadi Fuad E. A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay. Cogn Comput. 2016;8(2):143–52.

    Google Scholar 

  42. Zhao J, Du C, Sun H, Liu X, Sun J. Biologically motivated model for outdoor scene classification. Cogn Comput. 2013;7(1):20–33.

    Article  Google Scholar 

  43. Zineddin B, Wang Z, Shi Y, Li Y, Du M, Liu X. A multi-view approach to cDNA microarray analysis. Int J Comput Biol Drug Des. 2010;3(2):91–111.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of China under Grant 61403319, in part by the Fujian Natural Science Foundation under Grant 2015J05131, in part by the Fujian Provincial Key Laboratory of Eco-Industrial Green Technology and in part by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianyin Zeng.

Ethics declarations

Conflict of Interest

Nianyin Zeng, Zidong Wang, Hong Zhang, Weibo Liu and Fuad E. Alsaadi declare that they have no conflict of interest.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Declaration of Helsinki 1975, as revised in 2008 (5). Additional informed consent was obtained from all patients for which identifying information is included in this article.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, N., Wang, Z., Zhang, H. et al. Deep Belief Networks for Quantitative Analysis of a Gold Immunochromatographic Strip. Cogn Comput 8, 684–692 (2016). https://doi.org/10.1007/s12559-016-9404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-016-9404-x

Keywords

Navigation