Skip to main content
Log in

Learning Tone Mapping Function for Dehazing

  • Published:
Cognitive Computation Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. Zhengzheng T, Andrew A, Lei Z, Bin L, Amir H. A new spatio-temporal saliency-based video object segmentation. Cogn Comput 2016;8(4):629–647.

    Article  Google Scholar 

  2. He K, Sun J, Tang X. Guided image filtering. IEEE Trans Pattern Anal Mach Intell 2013;35(6):1397–1409.

    Article  PubMed  Google Scholar 

  3. Snaider J, Franklin S. Modular composite representation. Cogn Comput 2014;6(3):510–527.

    Article  Google Scholar 

  4. Bilal M, Mujtaba H, Jaffar MA. Novel optimization framework to recover true image data. Cogn Comput 2015;7(6):680–692.

    Article  Google Scholar 

  5. Gao F, Zhang Y, Wang J, Sun J, Yang E, Hussain A. Visual attention model based vehicle target detection in synthetic aperture radar images: a novel approach. Cogn Comput 2015;7(4):434–444.

    Article  Google Scholar 

  6. Gibson KB, Vo DT, Nguyen TQ. An investigation of dehazing effects on image and video coding. IEEE Trans Image Process 2012;21(2):662–673.

    Article  PubMed  Google Scholar 

  7. Gao X, Gao F, Tao D. Universal blind image quality assessment metrics via natural scene statistics and multiple kernel learning. IEEE Trans Neural Netw Learn Syst 2013;24(12):2013–2026.

    Article  PubMed  Google Scholar 

  8. Tarel JP, Hautire N, Caraffa L, Cord A, Halmaoui H, Gruyer D. Vision enhancement in homogeneous and heterogeneous fog. IEEE Intell Transport Syst Mag 2012;4(2):6–20.

    Article  Google Scholar 

  9. Narasimhan SG, Nayar SK. Chromatic framework for vision in bad weather. Proceedings of IEEE conference on computer vision and pattern recognition; 2000.

  10. Narasimhan SG, Nayar SK. Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intell 2003;25(6):713–724.

    Article  Google Scholar 

  11. Nishino K, Kratz L, Lombardi S. Bayesian defogging. Int J Comput Vis vol 2012;98(3):263–278.

    Article  Google Scholar 

  12. Narasimhan SG, Nayar SK. Interactive deweathering of an image using physical models. Proceedings of IEEE workshop on color and photometric methods in computer vision; 2003.

  13. Tarel JP, Hauti‘ere N. Fast visibility restoration from a single color or gray level image. Proceedings of IEEE international conference on computer vision; 2009.

  14. Aydn TO, Mantiuk R, Myszkowski K, Seidel HP. Dynamic range independent image quality assessment. ACM Trans Graph vol 2008;27(3).

  15. He K, Sun J, Tang X. Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 2011;33(12):2341–2352.

    Article  PubMed  Google Scholar 

  16. Tan R. Visibility in bad weather from a single image. Proceedings of IEEE international conference on computer vision and pattern recognition; 2008.

  17. Fattal R. Single image dehazing. ACM Trans Graph 2008;27(3).

  18. Lai Y, Chen Y, Chiou C, Hsu C. Single-image dehazing via optimal transmission map under scene priors. IEEE Trans Circuits Syst Video Technol 2015;25(1):1–14.

    Article  CAS  Google Scholar 

  19. Tang K, Yang J, Wang J. Investigating haze-relevant features in a learning framework for image dehazing. Proceedings of IEEE international conference on computer vision and pattern recognition.

  20. Chen Z, Abidi BR, Page DL, Abidi MA. Gray-level grouping (GLG): an automatic method for optimized image contrast enhancement—part I: the basic method. IEEE Trans Image Process 2006;15(9):2290–2302.

    Article  PubMed  Google Scholar 

  21. Chen Z, Abidi BR, Page DL, Abidi MA. Gray-level grouping (GLG): an automatic method for optimized image contrast enhancement—part II: the variations. IEEE Trans Image Process 2006;15(8):2303–2314.

    Article  PubMed  Google Scholar 

  22. Gibson KB, Nguyen TQ. Fast single image fog removal using the adaptive Wiener filter. Proceedings of IEEE international conference on image processing; 2013.

  23. Panetta KA, Wharton EJ, Agaian SS. Human visual system-based image enhancement and logarithmic contrast measure. IEEE Trans Syst Man Cybernet B 2008;38(1):174–188.

    Article  Google Scholar 

  24. Mangin JF. Entropy minimization for automatic correction of intensity nonuniformity. Proceedings of IEEE workshop on mathematical methods in biomedical image analysis; 2000.

  25. Tu Z, Zheng A, Yang E, Luo B, Hussain A. A biologically inspired vision-based approach for detecting multiple moving objects in complex outdoor scenes. Cogn Comput 2015;7(5):539–551.

    Article  Google Scholar 

  26. Zhao J, Du C, Sun H, Liu X, Sun J. Biologically motivated model for outdoor scene classification. Cogn Comput 2015;7(1):720–733.

    Article  Google Scholar 

  27. Bennett EP, McMillan L. Video enhancement using per-pixel virtual exposures. ACM Trans Graph 2005; 24(3):845–852.

    Article  Google Scholar 

  28. Ancuti CO, Ancuti C, Hermans C, Bekaert P. A fast semi-inverse approach to detect and remove the haze from a single image. Proceedings of Asian conference on computer vision; 2010.

  29. Dong X, Jinnang W, Pang Y, Wen J. Fast efficient algorithm for enhancement of low lighting video. Proceedings of IEEE international conference on multimedia and expo; 2011.

  30. Paris S, Durand F. A fast approximation of the bilateral filter using a signal processing approach. Proceedings of european conference on computer vision; 2006.

  31. Durand F, Dorsey J. Fast bilateral filtering for the display of high-dynamic range images. ACM Trans Graph 2002;21(3):257–266.

    Article  Google Scholar 

  32. Meng G, Xiang S, Zheng N, Pan C. Nonparametric illumination correction for scanned document images via convex hulls. IEEE Trans Pattern Anal Mach Intell 2013;35(7):1730–1743.

    Article  PubMed  Google Scholar 

  33. Jobson DJ, Rahman Z, Woodell GA. Properties and performance of a center/surround retinex. IEEE Trans on Image Process 1997;6(3):451–462.

    Article  CAS  Google Scholar 

  34. Jobson DJ, Rahman Z, Woodell GA. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans Image Process 1997;6(7):965–976.

    Article  CAS  PubMed  Google Scholar 

  35. http://research.microsoft.com/en-s/um/people/kahe/cvpr09/index.html.

  36. Duan L, Xu D, Tsang IW, Luo J. Visual event recognition in videos by learning from web data. IEEE Trans Pattern Anal Mach Intell 2012;34(9):1667–1680.

    Article  PubMed  Google Scholar 

  37. Zhang Z, Tao D. Slow feature analysis for human action recognition. IEEE Trans Pattern Anal Mach Intell 2012;34(3):436– 450.

    Article  PubMed  Google Scholar 

  38. Wang H, Chin TJ, Suter D. Simultaneously fitting and segmenting multiple-structure data with outliers. IEEE Trans Pattern Anal Mach Intell 2012;34(6):1177–1192.

    Article  PubMed  Google Scholar 

  39. Cao J, Pang Y, Li X. Pedestrian detection inspired by appearance constancy and shape symmetry. IEEE Trans Image Processing 2016;25(12):5538–5551.

    Article  Google Scholar 

  40. Lei J, Wang B, Fang Y, Lin W, Callet P, Ling N, Hou C. A universal framework for salient object detection. IEEE Trans Multimedia 2016;18(9):1783–1795.

    Article  Google Scholar 

  41. Lei J, Li S, Zhu C, Sun M, Hou C. Depth coding based on depth-texture motion and structure similarities. IEEE Trans Circuits Syst Video Techn 2015;25(2):275–286.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Basic Research Program of China (i.e., 973 Program) (Grant No. 2014CB340400) and the National Natural Science Foundation of China (Grant Nos. 61632081, 61372145, 61472274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwei Pang.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5). Additional informed consent was obtained from all patients for which identifying information is included in this article.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, X., Pang, Y., He, Y. et al. Learning Tone Mapping Function for Dehazing. Cogn Comput 9, 95–114 (2017). https://doi.org/10.1007/s12559-016-9437-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-016-9437-1

Keywords

Navigation