Skip to main content
Log in

Motor Imagery EEG Classification Based on Kernel Hierarchical Extreme Learning Machine

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

As connections from the brain to an external device, Brain-Computer Interface (BCI) systems are a crucial aspect of assisted communication and control. When equipped with well-designed feature extraction and classification approaches, information can be accurately acquired from the brain using such systems. The Hierarchical Extreme Learning Machine (HELM) has been developed as an effective and accurate classification approach due to its deep structure and extreme learning mechanism. A classification system for motor imagery EEG signals is proposed based on the HELM combined with a kernel, herein called the Kernel Hierarchical Extreme Learning Machine (KHELM). Principle Component Analysis (PCA) is used to reduce the dimensionality of the data, and Linear Discriminant Analysis (LDA) is introduced to push the features away from different classes. To demonstrate the performance, the proposed system is applied to the BCI competition 2003 Dataset Ia, and the results are compared with those from state-of-the-art methods; we find that the accuracy is up to 94.54%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blankertz B, Muller K-R, Curio G, Vaughan TM, Schalk G, Wolpaw JR, Schlogl A, Neuper C, Pfurtscheller G, Hinterberger T, Schroder M, Birbaumer N. The BCI, competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans Biomed Eng 2004;51(6):1044–1051.

    Article  PubMed  Google Scholar 

  2. Buzsȧki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nat Rev Neurosci 2012;13(6):407–420.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Camps-Valls G, Bruzzone L. Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens 2005;43(6):1351–1362.

    Article  Google Scholar 

  4. da Silva FL. EEG and MEG: relevance to neuroscience. Neuron 2013;80(5):1112–1128.

    Article  Google Scholar 

  5. Deng CW, Huang GB, Jia Xu, Tang JX. Extreme learning machines: new trends and applications. Sci Chin Inf Sci 2015;58(2):1–16.

    Article  Google Scholar 

  6. Duan L, Qi Z, Yang Z, Miao J. Research on heuristic feature extraction and classification of eeg signal based on bci data set. Res J Appl Sci Eng Technol 2013;5(3):1008–1014.

    Google Scholar 

  7. Duan L, Zhong H, Miao J, Yang Z, Ma W, Zhang X. A voting optimized strategy based on ELM for improving classification of motor imagery BCI data. Cogn Comput 2014;6(3):477–483.

    Article  Google Scholar 

  8. Guest editorial the third international meeting on brain-computer interface technology. Making a difference. IEEE Trans Neural Syst Rehab Eng 2006;14(2):126–127.

    Article  Google Scholar 

  9. Huang GB. An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput 2014;6(3):376–390.

    Article  Google Scholar 

  10. Huang G-B, Wang DH, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern 2011; 2(2):107–122.

    Article  Google Scholar 

  11. Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks (IEEE Cat. No.04CH37541). Institute of Electrical and Electronics Engineers (IEEE).

  12. Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing 2006;70(1–3):489–501.

    Article  Google Scholar 

  13. Jolliffe IT. Principal component analysis and factor analysis. In: Principal component analysis. Springer Nature; 1986 p 115–128.

  14. Kayikcioglu T, Aydemir O. A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data. Pattern Recogn Lett 2010;31(11):1207–1215.

    Article  Google Scholar 

  15. LeVan P, Urrestarazu E, Gotman J. A system for automatic artifact removal in ictal scalp EEG based on independent component analysis and bayesian classification. Clin Neurophysiol 2006;117(4):912–927.

    Article  CAS  PubMed  Google Scholar 

  16. Li X, Hu B, Shen J, Xu T, Retcliffe M. Mild depression detection of college students: an EEG-based solution with free viewing tasks. J Med Syst. 2015; 39(12).

  17. Mensh BD, Werfel J, Seung HS. BCI competition 2003—data set ia: Combining gamma-band power with slow cortical potentials to improve single-trial classification of electroencephalographic signals. IEEE Trans Biomed Eng 2004;51(6):1052–1056.

    Article  PubMed  Google Scholar 

  18. Nicolas-Alonso LF, Corralejo R, Gomez-Pilar J, Ȧlvarez D, Hornero R. Adaptive semi-supervised classification to reduce intersession non-stationarity in multiclass motor imagery-based brain–computer interfaces. Neurocomputing 2015;159:186–196.

    Article  Google Scholar 

  19. Panahi N, Shayesteh MG, Mihandoost S, Varghahan BZ. Recognition of different datasets using PCA, LDA, and various classifiers. In: 2011 5th International conference on application of information and communication technologies (AICT). Institute of Electrical and Electronics Engineers (IEEE); 2011.

  20. Pfurtscheller G, Neuper C, Schlogl A, Lugger K. Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans Rehab Eng 1998;6(3):316–325.

    Article  CAS  Google Scholar 

  21. Pfurtscheller G, Neuper Ch, Flotzinger D, Pregenzer M. EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 1997;103(6):642–651.

    Article  CAS  PubMed  Google Scholar 

  22. Subasi A, Erċelebi E. Classification of EEG signals using neural network and logistic regression. Comput Methods Programs Biomed 2005;78(2):87–99.

    Article  PubMed  Google Scholar 

  23. Sun S, Zhang C. 2005. Assessing features for electroencephalographic signal categorization. In: Proceedings. (ICASSP 05). IEEE international conference on acoustics, speech, and signal processing. Institute of Electrical and Electronics Engineers (IEEE);

  24. Tang J, Deng C, Huang G-B. Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 2016;27(4):809–821.

    Article  PubMed  Google Scholar 

  25. Ting W, Guo-zheng Y, Bang-hua Y, Sun H. EEG feature extraction based on wavelet packet decomposition for brain computer interface. Measurement 2008;41(6):618–625.

    Article  Google Scholar 

  26. Vecchiato G, Susac A, Margeti S, De Vico Fallani F, Maglione AG, Supek S, Planinic M, Babiloni F. High-resolution EEG analysis of power spectral density maps and coherence networks in a proportional reasoning task. Brain Topogr. 2012;26(2):303–314.

    Article  PubMed  Google Scholar 

  27. Wang B, Jun L, Bai J, Peng L, Li G, Li Y. EEG recognition based on multiple types of information by using wavelet packet transform and neural networks. In: 2005 IEEE Engineering in medicine and biology 27th annual conference. Institute of Electrical and Electronics Engineers (IEEE); 2005.

  28. Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, Donchin E, Quatrano LA, Robinson CJ, Vaughan TM. Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehab Eng 2000;8(2):164–173.

    Article  CAS  Google Scholar 

  29. Zandi AS, Javidan M, Dumont GA, Tafreshi R. Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform. IEEE Trans Biomed Eng 2010;57(7): 1639–1651.

    Article  PubMed  Google Scholar 

  30. Zhou W, Liu Y, Yuan Q, Li X. Epileptic seizure detection using lacunarity and bayesian linear discriminant analysis in intracranial EEG. IEEE Trans Biomed Eng 2013;60(12):3375– 3381.

    Article  PubMed  Google Scholar 

  31. Zong W, Huang G-B, Chen Y. Weighted extreme learning machine for imbalance learning. Neurocomputing 2013;101:229–242.

    Article  Google Scholar 

Download references

Acknowledgements

This research is partially sponsored by the Natural Science Foundation of China (Nos. 61672070, 81471770, 61572004 and 61650201), the Beijing Municipal Natural Science Foundation (4152005, 4162058), the Science and Technology Program of Tianjin (15YFXQGX0050), and the Qinghai Natural Science Foundation (2016-ZJ-Y04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Miao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Informed Consent

Informed consent was not required, as no humans or animals were involved.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, L., Bao, M., Cui, S. et al. Motor Imagery EEG Classification Based on Kernel Hierarchical Extreme Learning Machine. Cogn Comput 9, 758–765 (2017). https://doi.org/10.1007/s12559-017-9494-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-017-9494-0

Keywords

Navigation