Abstract
Plasticity in our brain offers us promising ability to learn and know the world. Although great successes have been achieved in many fields, few bio-inspired machine learning methods have mimicked this ability. Consequently, when meeting large-scale or time-varying data, these bio-inspired methods are infeasible, due to the reasons that they lack plasticity and need all training data loaded into memory. Furthermore, even the popular deep convolutional neural network (CNN) models have relatively fixed structures and cannot process time varying data well. Through incremental methodologies, this paper aims at exploring an end-to-end lifelong learning framework to achieve plasticities of both the feature and classifier constructions. The proposed model mainly comprises of three parts: Gabor filters followed by max pooling layer offering shift and scale tolerance to input samples, incremental unsupervised feature extraction, and incremental SVM trying to achieve plasticities of both the feature learning and classifier construction. Different from CNN, plasticity in our model has no back propogation (BP) process and does not need huge parameters. Our incremental models, including IncPCANet and IncKmeansNet, have achieved better results than PCANet and KmeansNet on minist and Caltech101 datasets respectively. Meanwhile, IncPCANet and IncKmeansNet show promising plasticity of feature extraction and classifier construction when the distribution of data changes. Lots of experiments have validated the performance of our model and verified a physiological hypothesis that plasticity exists in high level layer better than that in low level layer.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Jim M, David LG. Multiclass object recognition with sparse, localized features. In: IEEE Computer society conference on computer vision and pattern recognition; 2006. p. 11–18.
Rolls ET, Milward T. A model of invariant object recognition in the visual system: learning rules, activation functions, lateral inhibition, and information-based performance measures. Neural Comput. 2000;12(11):2547–72.
Thorpe S, Fize D, Marlot C. Speed of processing in the human visual system. Nature. 1996;381(6582):520–2.
Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.
LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series. In: The handbook of brain theory and neural networks; 1995. 3361(10).
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems; 2012. p. 1097–1105.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556. 2014.
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1–9.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y. PCANet: a simple deep learning baseline for image classification. IEEE Trans Image Process. 2015;24(12):5017–32.
Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern. 1980;36(4):193–202.
LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1(4):541–51.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. arXiv:1512.03385. 2015.
Bruna J, Mallat S. Invariant scattering convolution networks. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1872C–86.
Turk M, Pentland A. Eigenfaces for recognition. J Cogn Neurosci. 1991;3(1):71–86.
Hyvarinen A. Survey on independent component analysis. Neural Computing Surveys. 1999;2(4):94–128.
Bartlett MS. Independent component representations for face recognition. In: Face image analysis by unsupervised learning. US: Springer; 2001. p. 39–67.
Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell. 1997;19(7):711–20.
Lee H, Battle A, Raina R, Ng AY. Efficient sparse coding algorithms. In: Advances in neural information processing systems; 2007. p. 801–808.
Schölkopf B, Smola A, Müller KR. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998;10(5):1299–319.
Mika S, Ratsch G, Weston J, Scholkopf B, Mullers KR. Fisher discriminant analysis with kernels. In: Neural networks for signal processing IX, proceedings of the 1999 IEEE signal processing society workshop; 1999. p. 41–48.
Bach FR, Jordan MI. Kernel independent component analysis. J Mach Learn Res. 2002;3:1–48.
MacQueen J. Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability; 1967. 1(14): p. 281–297.
Hegde A, Principe JC, Erdogmus D, Ozertem U, Rao YN, Peddaneni H. Perturbation-based eigenvector updates for on-line principal components analysis and canonical correlation analysis. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology. 2006;45(1–2):85–95.
Weng J, Zhang Y, Hwang WS. Candid covariance-free incremental principal component analysis. IEEE Trans Pattern Anal Mach Intell. 2003;25:1034–40.
Krasulina T. Method of stochastic approximation in the determination of the largest eigenvalue of the mathematical expectation of random matrices. In: Automatation and remote control; 1970. p. 50–56.
Diehl CP, Cauwenberghs G. SVM incremental learning, adaptation and optimization. Proceedings of the International Joint Conference on Neural Networks. 2003;4:2685–90.
Thrun S. Explanation-based neural network learning: a lifelong learning approach. Springer Science & Business Media. 2012;(357).
Thrun S, O’Sullivan J. Discovering structure in multiple learning tasks: the TC algorithm. ICML. 1996;96:489–97.
Thrun S, Mitchell TM. Lifelong robot learning. Robot Auton Syst. 1995;15(1–2):25–46.
Caruana R. Multitask learning. Mach Learn. 1997;28:41C75.
Donmez P, Carbonell JG. Proactive learning: cost-sensitive active learning with multiple imperfect oracles. In: Proceedings of the 17th ACM conference on information and knowledge management. ACM; p. 619–628.
Tong S, Koller D. Active learning for structure in bayesian networks. In: IJCAI; 2001.
Brunskill E, Leffler B, Li L, Littman ML, Roy N. Corl: a continuous-state offset-dynamics reinforcement learner. In: Proceedings of the 24th conference on uncertainty in artificial intelligence (UAI); 2012. p. 53–61.
Mitchell TM, Cohen WW, Hruschka Jr ER, Talukdar PP, Betteridge J, Carlson A, Lao N. Never ending learning. In: AAAI; 2015. p. 2302–2310.
Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka Jr ER, Mitchell TM. Toward an architecture for never-ending language learning. AAAI. 2010;5:3.
Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2(11):1019–25.
Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y. An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th international conference on machine learning. ACM; 2007. p. 473–480.
Fei-Fei L, Fergus R, Perona P. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput Vis Image Underst. 2007;106(1):59–70.
Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2(3):27.
Funding
This work was supported in part by the National Natural Science Foundation of China under Grant 61773375, Grant 61375036, and Grant 61511130079, in part by the Microsoft Collaborative Research Project.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interests
The authors declare that they have no conflict of interest.
Ethical Approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Wangli Hao and Junsong Fan contribute equally to this study and share first authorship.
Rights and permissions
About this article
Cite this article
Hao, W., Fan, J., Zhang, Z. et al. End-to-End Lifelong Learning: a Framework to Achieve Plasticities of both the Feature and Classifier Constructions. Cogn Comput 10, 321–333 (2018). https://doi.org/10.1007/s12559-017-9514-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12559-017-9514-0