Skip to main content
Log in

Extreme Learning Machines for VISualization+R: Mastering Visualization with Target Variables

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The current paper presents an improvement of the Extreme Learning Machines for VISualization (ELMVIS+) nonlinear dimensionality reduction method. In this improved method, called ELMVIS+R, it is proposed to apply the originally unsupervised ELMVIS+ method for the regression problems, using target values to improve visualization results. It has been shown in previous work that the approach of adding supervised component for classification problems indeed allows to obtain better visualization results. To verify this assumption for regression problems, a set of experiments on several different datasets was performed. The newly proposed method was compared to the ELMVIS+ method and, in most cases, outperformed the original algorithm. Results, presented in this article, prove the general idea that using supervised components (target values) with nonlinear dimensionality reduction method like ELMVIS+ can improve both visual properties and overall accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Løkse S, Bianchi FM, Jenssen R. Training echo state networks with regularization through dimensionality reduction. Cogn Comput 2017;9(3):364–378.

    Article  Google Scholar 

  2. Gisbrecht A., Hammer B. Data visualization by nonlinear dimensionality reduction. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2015;5(2):51–73.

    Google Scholar 

  3. Kaski S., Peltonen J. Dimensionality reduction for data visualization. IEEE Signal Process Mag 2011;28(2): 100–104.

    Article  Google Scholar 

  4. Akusok A., Baek S., Miche Y., Björk K.M., Nian R., Lauren P., Lendasse A. ELMVIS+: fast nonlinear visualization technique based on cosine distance and extreme learning machines. Neurocomputing 2016;205: 247–263.

    Article  Google Scholar 

  5. Padmaja DL, Vishnuvardhan B. Comparative study of feature subset selection methods for dimensionality reduction on scientific data. 2016 IEEE 6th International Conference on Advanced Computing (IACC); 2016. p. 31–34.

  6. Torabi A., Zareayan Jahromy F., Daliri M.R. 2017. Semantic category-based classification using nonlinear features and wavelet coefficients of brain signals. Cognitive Computation.

  7. Xia S.X., Meng F.R., Liu B., Zhou Y. A kernel clustering-based possibilistic fuzzy extreme learning machine for class imbalance learning. Cogn Comput 2015;7(1):74–85.

    Article  Google Scholar 

  8. Wei H., Dong Z. V4 neural network model for shape-based feature extraction and object discrimination. Cogn Comput 2015;7(6):753–762.

    Article  Google Scholar 

  9. Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern 1982;43(1):59–69.

    Article  Google Scholar 

  10. Minhas S., Hussain A. From spin to swindle: identifying falsification in financial text. Cogn Comput 2016;8 (4):729–745.

    Article  Google Scholar 

  11. Dornaika F, Assoum A. Linear Dimensionality Reduction through Eigenvector Selection for Object Recognition. Springer Berlin Heidelberg, Berlin, Heidelberg; 2010. p. 276–285.

  12. Shereena V.B., Julie M.D. Significance of dimensionality reduction in image processing. Sign Image Process Int J 2015;6(3):27–42.

    Article  Google Scholar 

  13. Haghighat M., Zonouz S., Abdel-Mottaleb M. CloudID: trustworthy cloud-based and cross-enterprise biometric identification. Expert Syst Appl 2015;42(21):7905–7916.

    Article  Google Scholar 

  14. Ding S., Meng L., Han Y., Xue Y. A review on feature binding theory and its functions observed in perceptual process. Cogn Comput 2017;9(2):194–206.

    Article  Google Scholar 

  15. Ye J. Dimension Reduction Algorithms in Data Mining, with Applications. Minneapolis: PhD thesis, University of Minnesota; 2005. AAI3172868.

    Google Scholar 

  16. Kruskal J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964;29(1):1–27.

    Article  Google Scholar 

  17. Sammon J. A nonlinear mapping for data structure analysis. IEEE Trans Comput 1969;18:401–409.

    Article  Google Scholar 

  18. Tenenbaum J.B., De Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000;290(5500):2319–2323.

    Article  PubMed  CAS  Google Scholar 

  19. Merlin P., Sorjamaa A., Maillet B., Lendasse A. X-SOM and L-SOM: A double classification approach for missing value imputation. Neurocomputing 2010;73(7–9):1103–1108.

    Article  Google Scholar 

  20. Dablemont S, Simon G, Lendasse A, Ruttiens A, Blayo F, Verleysen M. Time series forecasting with SOM and local non-linear models - application to the DAX30 index prediction. Proceedings of the Workshop on Self-organizing Maps, Hibikino, Japan; 2003. p. 340–345.

  21. Khan A., Xue L.Z., Wei W., Qu Y., Hussain A., Vencio R.Z.N. Convergence analysis of a new self organizing map based optimization (SOMO) algorithm. Cogn Comput 2015;7(4):477–486.

    Article  Google Scholar 

  22. Bishop C.M., Svensén M, Williams C.K.I. GTM: The generative topographic mapping. Neural Comput 1998;10(1):215–234.

    Article  Google Scholar 

  23. Belkin M., Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Proces Syst 2001;14:585–591.

    Google Scholar 

  24. Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 2003;15(6):1373–1396.

    Article  Google Scholar 

  25. Jolliffe I. Principal Component Analysis. Berlin: Springer Verlag; 1986.

    Book  Google Scholar 

  26. Wold H. Estimation of principal components and related models by iterative least squares. In Multivariate Analysis. Volume 59. Academic Press, NY. In: Krishnaiah P, editors; 1966. p. 391– 420.

  27. Lendasse A, Corona F. Linear projection based on noise variance estimation: Application to spectral data. Proceedings of ESANN 2008, European Symposium on Artificial Neural Networks, Bruges (Belgium), d-side publ. (Evere, Belgium). In: Verleysen M, editors; 2008. p. 457–462.

  28. Akusok A., Miche Y., Björk K.M., Nian R., Lauren P., Lendasse A. ELMVIS+: improved nonlinear visualization technique using cosine distance and extreme learning machines. Proceedings of ELM-2015 Volume 2: Theory, Algorithms and Applications (II). Springer International Publishing; 2016. p. 357–369.

  29. Huang G.B. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput 2015;7(3):263–278.

    Article  Google Scholar 

  30. Cambria E., et al. Extreme learning machines. IEEE Intell Syst 2013;28(6):30–59.

    Article  Google Scholar 

  31. Gritsenko A, Akusok A, Miche Y, Björk KM, Baek S, Lendasse A. Combined Nonlinear Visualization and Classification: ELMVIS++C. International Joint Conference on Neural Networks (IJCNN 2016), IEEE; 2016. p. 2617–2624.

  32. Nian R., He B., Zheng B., Van Heeswijk M., Yu Q., Miche Y., Lendasse A. Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing 2014;128:273–284.

    Article  Google Scholar 

  33. Akusok A., Björk K.M., Miche Y., Lendasse A. High-performance extreme learning machines: a complete toolbox for big data applications. IEEE Access 2015;3:1011–1025.

    Article  Google Scholar 

  34. Burkard R., Dell’Amico M., Martello S. 2012. Assignment problems. Society for Industrial and Applied Mathematics.

  35. Lee J.A., Verleysen M. Nonlinear dimensionality reduction. New York: Springer; 2007.

    Book  Google Scholar 

  36. Venna J., Peltonen J., Nybo K., Aidos H., Kaski S. Information retrieval perspective to nonlinear dimensionality reduction for data visualization. J Mach Learn Res 2010;11:451–490.

    Google Scholar 

  37. LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998;86(11):2278–2324.

    Article  Google Scholar 

  38. Lichman M. 2013. UCI machine learning repository. http://archive.ics.uci.edu/ml.

  39. Gerritsma J., Omnink R., Versluis A. Geometry, resistance and stability of the delft systematic yacht hull series. Int Shipbuild Prog 1981;28(328):276–297.

    Article  Google Scholar 

  40. Ortigosa I, Lopez R, Garcia J. A neural networks approach to residuary resistance of sailing yachts prediction. Proceedings of the international conference on marine engineering MARINE. Volume 2007; 2007. p. 250.

  41. Yeh I.C. Modeling of strength of high-performance concrete using artificial neural networks. Cem Concr Res 1998;28(12):1797–1808.

    Article  CAS  Google Scholar 

  42. Kaya H, Tüfekci P, Gürgen FS. 2012. Local and global learning methods for predicting power of a combined gas & steam turbine.

  43. Cortez P, Cerdeira A, Almeida F, Matos T, Reis J. Modeling wine preferences by data mining from physicochemical properties. Decis Support Syst 2009;47(4):547–553. Smart Business Networks: Concepts and Empirical Evidence.

    Article  Google Scholar 

  44. Vergara A., Vembu S., Ayhan T., Ryan M.A., Homer M.L., Huerta R. Chemical gas sensor drift compensation using classifier ensembles. Sensors Actuators B Chem 2012;166–167:320–329.

    Article  CAS  Google Scholar 

  45. Rodriguez-Lujan I., Fonollosa J., Vergara A., Homer M., Huerta R. On the calibration of sensor arrays for pattern recognition using the minimal number of experiments. Chemom Intell Lab Syst 2014;130:123–134.

    Article  CAS  Google Scholar 

  46. Akusok A. 2016. ELMVIS+ code. https://github.com/akusok/elmvis.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Gritsenko.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritsenko, A., Akusok, A., Baek, S. et al. Extreme Learning Machines for VISualization+R: Mastering Visualization with Target Variables. Cogn Comput 10, 464–477 (2018). https://doi.org/10.1007/s12559-017-9537-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-017-9537-6

Keywords

Navigation