Abstract
This paper presents a cognitively inspired qualitative theory, \(QCharm\), which defines five operators for colour combination based on the qualitative colour descriptor (QCD) and applies these operators to recommend palettes of harmonic colours. Machine learning techniques have been applied to learn the QCD colour coordinates in Kobayashi’s colour space, in order to assign the resulting \(QCharm\) harmonic-colour palettes to cognitive keywords representing a feeling or a lifestyle. Furthermore, a regression model has been implemented to learn users’ preferences based on the COLOURlovers dataset. The resulting model is used as an additional criterion for recommendation. The resulting cognitive system can recommend (i) colour palettes using keywords on feelings/lifestyle, and (ii) colour palettes using the learnt user’s preference model. As an example of the practical applicability of the model, a web application, the \(QCharm\) tool, has been implemented to provide recommendations to users in an interactive way. The \(QCharm\) tool can also extract colour palettes from digital images and assign a cognitive adjective to describe colour combinations, to serve as a starting point for the design process.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
In these cases, there are combinations with some equal colour. For example, if \(k = 0\) and \(a_{1}=a_{2}=a_{3}= 0\), then a unique colour is obtained of colours with different hues and different prefixes, a generalization of the former functions, denoted by \(QCharm_{k,a_{1},a_{2},a_{3}}(h, a)\) is given as:
$$QCharm_{k,a_{1},a_{2},a_{3}}: H\times A \rightarrow (H\times A)^{3}$$$$\begin{array}{l} QCharm_{k,a_{1},a_{2},a_{3}}(h, a)= \\ \{(h-k, a+a_{1}), (h,a+a_{2}), (h +k, a+a_{3}\}(\bmod N, \bmod 4) \end{array}$$where \(h\in H\), \(a\in A\), \(k\in \{0, 1,2,round(N/2)\}\) and \(a_{i}\in \{0, 1, 2, 3\}\) for \(i = 1,2,3\).
References
Asghar MZ, Khan A, Bibi A, Kundi FM, Ahmad H. Sentence-level emotion detection framework using rule-based classification. Cogn Comput 2017;9(6):868–894. https://doi.org/10.1007/s12559-017-9503-3.
Burchett K. Color harmony attributes. Color Res Appl 1991;16:275–278.
Burchett K. Color harmony. Color Res Appl 2002;27:28–31.
Cambria E, Hussain A. Sentic album: Content-, concept-, and context-based online personal photo management system. Cogn Comput 2012; 4 (477): 415–423. https://doi.org/10.1007/s12559-012-9145-4.
Cheng Z, Yang Q, Sheng B. 2015. Deep colorization. In: IEEE International conference on computer vision (ICCV).
Chuang M, Ou L. 2001. Influence of a holistic color interval on color harmony. WOS:000166123300002. https://ir.nctu.edu.tw/bitstream/11536/29880/1/000166123300002.pdf.
Cohen-Or D, Sorkine O, Gal R, Leyvand T, Xu YQ. Color harmonization. ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06. New York: ACM; 2006. p. 624–630. https://doi.org/10.1145/1179352.1141933.
Csurka G, Skaff S, Marchesotti L, Saunders C. 2011. Building look & feel concept models from color combinations, with applications in image classification, retrieval, and color transfer. The Visual Computer.
Cutsuridis V. A cognitive model of saliency, overt attention and picture scanning. Cognit Comput 2009;1: 292–299.
Datta R, Joshi D, Li J, Wang JZ. Studying aesthetics in photographic images using a computational approach. Computer vision – ECCV 2006. In: Leonardis A, Bischof H, and Pinz A, editors. Berlin: Springer Berlin Heidelberg; 2006. p. 288–301.
Cambria E, Poria S, Bajpai R, Schuller B. SenticNet 4: a semantic resource for sentiment analysis based on conceptual primitives. Proceedings of COLING 2016, the 26th international conference on computational linguistics; 2016. p. 2666–2677.
Falomir Z, Museros L, Gonzalez-Abril L. A model for colour naming and comparing based on conceptual neighbourhood. an application for comparing art compositions. Knowl-Based Syst 2015;81:1–21. https://doi.org/10.1016/j.knosys.2014.12.013.
Falomir Z, Museros L, Gonzalez-Abril L, Escrig MT, Ortega JA. A model for the qualitative description of images based on visual and spatial features. Comput Vis Image Underst 2012;116(6):698–714. https://doi.org/10.1016/j.cviu.2012.01.007 https://doi.org/10.1016/j.cviu.2012.01.007.
Falomir Z, Museros L, Gonzalez-Abril L, Sanz I. A model for qualitative colour comparison using interval distances. Displays 2013;34:250–257. https://doi.org/10.1016/j.displa.2013.07.004.
Fan RE, Chen P, Lin C, Griscom WS. A study on smo-type decomposition methods for support vector machines. IEEE Trans Neural Netw 2006;17:893–908.
Foster V. Color Matching Handbook. San Diego: Thunder Bay Press; 2004. https://books.google.co.uk/books?id=x0QHAAAACAAJ.
Freksa C. Spatial computing. Cognitive and Linguistic Aspects of Geographic Space: New Perspectives on Geographic Information Research. In: Raubal M, Mark DM, and Frank AU, editors. Berlin: Springer Berlin Heidelberg; 2013. p. 23–42. https://doi.org/10.1007/978-3-642-34359-9_2.
Fuchs I, Ansorge U, Redies C, Leder H. Salience in paintings: bottom-up influences on eye fixations. Cogn Comput 2011;3:25–36.
Gramazio C, Laidlaw D, Schloss K. Colorgorical: Creating discriminable and preferable color palettes for information visualization. IEEE Trans Vis Comput Graph 2017;23:521–530.
Itten J, Birren F. The Elements of Color. A Basic color library. New York: Wiley; 1970. https://books.google.es/books?id=ofvRhNBgoCoC.
Jahanian A, Liu J, Lin Q, Tretter D, O’Brien-Strain E, Lee SC, Lyons N, Allebach J. Recommendation system for automatic design of magazine covers. Proceedings of the 2013 International Conference on Intelligent User Interfaces, IUI ’13. New York: ACM; 2013. p. 95–106. https://doi.org/10.1145/2449396.2449411.
Judd D, Wyszecki G. Color in business, science and industry. New York: Wiley; 1975.
Kao Y, He R, Huang K. Deep aesthetic quality assessment with semantic information. IEEE Trans Image Process 2017;26:1482–1495.
Kita N, Miyata K. 2016. Aesthetic rating and color suggestion for color palettes. In: Computer graphics forum (pacific graphics 2016).
Kobayashi S. The aim and method of the color image scale. Color Res Appl 1981;6(2):93–107.
Kobayashi S. Color image scale. USA: Kodansha; 1992.
Li-Chen O, Ronnier LM, Andrée W, Angela W. A study of colour emotion and colour preference. part i: Colour emotions for single colours. Color Res Appl 2004;29(3):232–240. https://doi.org/10.1002/col.20010.
Li-Chen O, Ronnier LM, Andrée W, Angela W. A study of colour emotion and colour preference. part ii: Colour emotions for two-colour combinations. Color Res Appl 2004;29(4):292–298. https://doi.org/10.1002/col.20024.
Liu D, Jiang Y, Pei M, Liu S. Emotional image color transfer via deep learning. Pattern Recogn Lett 2018;110:16 – 22. https://doi.org/10.1016/j.patrec.2018.03.015. http://www.sciencedirect.com/science/article/pii/S0167865518300941.
Lotto RB, Purves D. The effects of color on brightness. Nat Neurosci 1999;2(11):1010–1014. https://doi.org/10.1038/14808.
Lu X, Lin Z, Jin H, Yang J, Wang JZ. Rating image aesthetics using deep learning. IEEE Transactions on Multimedia Volume 2015;17(11):2021–2034.
Ma Y, Peng H, Khan T, Cambria E, Hussain A. 2018. Sentic LSTM: a hybrid network for targeted aspect-based sentiment analysis. Cogn Comput.
Machajdik J, Hanbury A. Affective image classification using features inspired by psychology and art theory. Proceedings of the 18th ACM International Conference on Multimedia, MM ’10. New York: ACM; 2010. p. 83–92. https://doi.org/10.1145/1873951.1873965.
Moon P, Spencer DE. Aesthetic measure applied to color harmony∗. J Opt Soc Am 1944;34(4):234–242. https://doi.org/10.1364/JOSA.34.000234. http://www.osapublishing.org/abstract.cfm?URI=josa-34-4-234.
Moretti G, Lyons P, Marsland S. Computational production of colour harmony. part 1: a prototype colour harmonization tool. Color Res Appl 2013;38(3):203–217. https://doi.org/10.1002/col.20736.
Munsell AH. 1921. A grammar of color. Strathmore Paper Company.
Museros L, Sanz I, Falomir Z, Gonzalez-Abril L. A qualitative color harmony theory. Artificial Intelligence Research and Development - Proceedings of the 19th International Conference of the Catalan Association for Artificial Intelligence, Barcelona, Catalonia, Spain, October 19-21, 2016, Frontiers in Artificial Intelligence and Applications. In: Nebot Ȧ, Binefa X, and de Mȧntaras RL, editors. IOS Press; 2016. p. 98–107. https://doi.org/10.3233/978-1-61499-696-5-98.
Nishiyama M, Okabe T, Sato I, Sato Y. Aesthetic quality classification of photographs based on color harmony. CVPR 2011; 2011. p. 33–40. https://doi.org/10.1109/CVPR.2011.5995539.
O’Connor Z. Colour harmony revisited. Color Res Appl 2010;35(4):267–273. https://doi.org/10.1002/col.20578.
O’Donovan P, Agarwala A, Hertzmann A. Color compatibility from large datasets. ACM Trans Graph 2011;30(4):63:1–63:12. https://doi.org/10.1145/2010324.1964958.
Ostwald W. Color science. England: Windsor Newton; 1932.
Ou LC, Luo MR. A colour harmony model for two-colour combinations. Color Res Appl 2006;31(3):191–204. https://doi.org/10.1002/col.20208.
Ou LC, Ronnier Luo M, Sun PL, Hu NC, Chen HS, Guan SS, Woodcock A, Caivano JL, Huertas R, Treméau A, Billger M, Izadan H, Richter K. A cross-cultural comparison of colour emotion for two-colour combinations. Color Res Appl 2012;37(1):23–43. https://doi.org/10.1002/col.20648.
Palmer SE, Griscom WS. Accounting for taste: Individual differences in preference for harmony. Psychon Bullet Rev 2013;20(3):453–461. https://doi.org/10.3758/s13423-012-0355-2.
Sanz I, Museros L, Falomir Z, Gonzalez-Abril L. Customising a qualitative colour description for adaptability and usability. Pattern Recogn Lett 2015;67:2–10. https://doi.org/10.1016/j.patrec.2015.06.014. http://www.sciencedirect.com/science/article/pii/S0167865515001786. Cognitive Systems for Knowledge Discovery.
Schloss KB, Palmer SE. Aesthetic response to color combinations: preference, harmony, and similarity. Atten Percept Psychophys 2011;73(2):551–571. https://doi.org/10.3758/s13414-010-0027-0.
Solli M, Lenz R. Color semantics for image indexing. European conference on color, graphics and vision; 2010. p. 353–358.
Vapnik V. Statistical learning theory. New York: Wiley; 1998.
Westland S, Laycock K, Cheung V, Henry P, Mahyar F. Colour harmony. Colour: Des Creat 2007;1(1):1–15.
Yang HC, Lee CH, Wu CY. 2018. Sentiment discovery of social messages using self-organizing maps. Cognitive Computation. https://doi.org/10.1007/s12559-018-9576-7.
Yao L, Suryanarayan P, Qiao M, Wang JZ, Li J. Oscar: On-site composition and aesthetics feedback through exemplars for photographers. Int J Comput Vis 2012;96(3):353–383. https://doi.org/10.1007/s11263-011-0478-3.
Funding
Dr. Museros, Dr. Sanz and Prof. Dr. Gonzalez-Abril acknowledge the funding by the Spanish Ministry of Economy and Competitiveness (TIN2017-88805-R) and Universitat Jaume I (UJI-B2017-73).
Dr.-Ing. Falomir acknowledges the funding and support by the Bremen Spatial Cognition CenterFootnote 4 (BSCC), and the University Bremen under project Cognitive Qualitative Descriptions and Applications (CogQDA).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
About this article
Cite this article
Museros, L., Sanz, I., Falomir, Z. et al. Creating, Interpreting and Rating Harmonic Colour Palettes Using a Cognitively Inspired Model. Cogn Comput 12, 442–459 (2020). https://doi.org/10.1007/s12559-018-9589-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12559-018-9589-2