Skip to main content
Log in

Consensus Building in Multi-criteria Group Decision-Making with Single-Valued Neutrosophic Sets

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

In order to obtain high satisfaction from experts, the consensus reaching process (CRP) is an essential requirement for dealing with multi-criteria group decision making (MCGDM) problems. Single-valued neutrosophic number (SVNN) is an effective tool to describe the uncertainty of the expert cognition. Thus, we develop a consensus reaching model for single-valued neutrosophic MCGDM in this paper. First, each expert makes his/her judgment on each alternative with respect to multiple criteria by SVNNs, and the group solution is obtained by the generalized Shapley single-valued neutrosophic Choquet integral (GS-SVNCI) operator to consider the correlations among elements comprehensively. Second, the projection-based consensus measure is proposed to reflect the agreement between the individual and collective opinions. Then, a threshold value is used to determine the CRP whether to be executed based on the expert’s consensus level. If yes, the feedback mechanism provides the experts with personalized adjustment advices based on their psychic utility to group pressure. Finally, we illustrate the feasibility of the proposed consensus model by an example and analyze the superiority by comparing with some existing MCGDM methods and different CRP models. The developed consensus model can consider interrelationships between experts, which is more effective and reasonable to obtain the collective resolution. Further, the consensus measure based on the projection can comprehensively reflect the closeness between the individual and collective opinions. In addition, the personalized adjustment advices considering the experts’ psychic utility to group pressure improve their acceptance of these advices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morente-Molinera JA, Wu X, Morfeq A, Al-Hmouz R, Herrera-Viedma E. A novel multi-criteria group decision-making method for heterogeneous and dynamic contexts using multi-granular fuzzy linguistic modelling and consensus measures. Inf Fusion. 2020;53:240–50.

    Google Scholar 

  2. Peng JJ, Wang JQ, Wang J, Zhang HY, Chen XH. Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int J Syst Sci. 2016;47(10):2342–58.

    MATH  Google Scholar 

  3. Wu Q, Liu X, Qin J, Wang W, Zhou L. A linguistic distribution behavioral multi-criteria group decision making model integrating extended generalized TODIM and quantum decision theory. Appl Soft Comput. 2021;98:106757.

    Google Scholar 

  4. Zadeh LA. Fuzzy sets. Inf Control. 1965;8(3):338–53.

    MATH  Google Scholar 

  5. Atanassov KT. Intuitionistic fuzzy collections. Fuzzy sets Syst. 1986;20(1):87–96.

    MATH  Google Scholar 

  6. Deveci M, Zcan E, John R, Covrig CF, Pamucar D. A study on offshore wind farm siting criteria using a novel interval-valued fuzzy-rough based Delphi method. J Environ Manag. 2020;270:110916.

    Google Scholar 

  7. Pamucar D, Petrovic I, Cirovic G. Modification of the best-worst and MABAC methods: a novel approach based on interval-valued fuzzy-rough numbers. Expert Syst Appl. 2018;91:89–106.

    Google Scholar 

  8. Pinar A, Boran FE. A novel distance measure on q-rung picture fuzzy sets and its application to decision making and classification problems. Artif Intell Review. 2021. https://doi.org/10.1007/s10462-021-09990-2.

    Article  Google Scholar 

  9. Si A, Das S, Kar S. An approach to rank picture fuzzy numbers for decision making problems. Decis Making Appl Manag Eng. 2019;2:54–64.

    Google Scholar 

  10. Singh S, Ganie AH. Applications of picture fuzzy similarity measures in pattern recognition, clustering, and MADM. Expert Syst Appl. 2021;168:114264.

    Google Scholar 

  11. Liu S, Yu W, Chan F, Niu B. A variable weight-based hybrid approach for multi-attribute group decision making under interval-valued intuitionistic fuzzy sets. Int J Intell Syst. 2021;36:1015–52.

    Google Scholar 

  12. You P, Liu X, Sun J. A multi-attribute group decision making method considering both the correlation coefficient and hesitancy degrees under interval-valued intuitionistic fuzzy environment. Appl Soft Comput. 2021;104(1):107187.

    Google Scholar 

  13. Radu V, Radu F, Tabirca AI, Saplacan SI, Lile R. Bibliometric analysis of fuzzy logic research in international scientific databases. Int J Comput Commun Control. 2021;16(1):4120.

    Google Scholar 

  14. Smarandache F. A unifying field in logics: neutrosophic logic Neutrosophy, neutrosophic set, probability. Rehoboth: American Research Press; 1999. p. 1–141.

    MATH  Google Scholar 

  15. Wang H, Smarandache F, Zhang YQ, Sunderraman R. Single valued neutrosophic sets. Multispace Multistructure. 2010;4:410–3.

    MATH  Google Scholar 

  16. Garg H. Novel neutrality aggregation operator-based multiattribute group decision-making method for single-valued neutrosophic numbers. Soft Comput. 2020;24:10327–49.

    Google Scholar 

  17. Garg H. Decision making analysis based on sine trigonometric operational laws for single-valued neutrosophic sets and their applications. Appl Comput Math. 2020;19(2):255–76.

    MathSciNet  Google Scholar 

  18. Garg H. New logarithmic operational laws and their applications to multiattribute decision making for single-valued neutrosophic numbers. Cognit Syst Res. 2018;52:931–46.

    Google Scholar 

  19. Nancy GH. A novel divergence measure and its based TOPSIS method for multi criteria decision-making under single-valued neutrosophic environment. J Intell Fuzzy Syst. 2019;36(1):101–15.

    Google Scholar 

  20. Ye J. Projection and bidirectional projection measures of single-valued neutrosophic sets and their decision-making method for mechanical design schemes. J Exp Theoret Artif Intell. 2017;29(4):1–10.

    Google Scholar 

  21. Zeng S, Luo D, Zhang C, Li X, Shi Y. A correlation-based TOPSIS method for multiple attribute decision making with single-valued neutrosophic information. Int J Inf Tech Deci Making. 2020;19(1):343–58.

    Google Scholar 

  22. Peng JJ, Wang JQ, Zhang HY, Chen XH. An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl Soft Comput. 2014;25:336–46.

    Google Scholar 

  23. Tian ZP, Nie RX, Wang XK, Wang JQ. Single-valued neutrosophic ELECTRE II for multi-criteria group decision-making with unknown weight information. Comput Appl Math. 2020;39(3):1–32.

    MathSciNet  Google Scholar 

  24. Long X, Liu L, Xiao C, Cheng P, Fu C. Restoration methods selection for wood components of Chinese ancient architectures based on TODIM with single-valued neutrosophic sets. Math Problems Eng. 2020. https://doi.org/10.1155/2020/5049360.

    Article  Google Scholar 

  25. Abdullah L, Ong Z, Mohd MS. Single-valued neutrosophic DEMATEL for segregating types of criteria: a case of subcontractors’ selection. J Math. 2021. https://doi.org/10.1155/2021/6636029.

    Article  MathSciNet  Google Scholar 

  26. Liu F, Aiwu G, Lukovac V, Vukic M. A multicriteria model for the selection of the transport service provider: a single valued neutrosophic DEMATEL multicriteria model. Decis Making: Appl Manag Eng. 2018;1(2):121–30.

    Google Scholar 

  27. Han L, Wei C. Group decision making method based on single valued neutrosophic Choquet integral operator. Oper Res Trans. 2017;21(2):110–8.

    MATH  Google Scholar 

  28. Jana C, Pal M. Multi-criteria decision making process based on some single-valued neutrosophic Dombi power aggregation operators. Soft Comput. 2021;25(7):5055–72.

    Google Scholar 

  29. Zhao S, Wang D, Liang C, Leng Y, Xu J. Some single-valued neutrosophic power Heronian aggregation operators and their application to multiple-attribute group decision-making. Symmetry. 2019;11(5):653.

    Google Scholar 

  30. Zavadskas EK, Bausys R, Kaklauskas A, Ubarte I, Kuzminske A, Gudiene N. Sustainable market valuation of buildings by the single-valued neutrosophic MAMVA method. Appl Soft Comput. 2017;57:74–87.

    Google Scholar 

  31. Wang J, Zhao W, Qiu L, Yuan P. Evaluation and selection of integrated energy system construction scheme equipped with smart energy management and control platform using single-valued neutrosophic numbers. Sustainability. 2021;13(5):2615.

    Google Scholar 

  32. Liang Y, Qin J, Martínez L. Consensus-based multicriteria group preference analysis model with multigranular linguistic distribution information. IEEE Trans Fuzzy Syst. 2020;28(12):3145–60.

    Google Scholar 

  33. Zhang B, Liang H, Zhang G. Reaching a consensus with minimum adjustment in MAGDM with hesitant fuzzy linguistic term sets. Inf Fusion. 2018;42:12–23.

    Google Scholar 

  34. Zhang HJ, Dong YC, Palomares-Carrascosa I, Zhou HW. Failure mode and effect analysis in a linguistic context: a consensus-based multiattribute group decision-making approach. IEEE Trans Reliab. 2019;68:566–82.

    Google Scholar 

  35. Palomares I, Estrella FJ, Martínez L, Herrera F. Consensus under a fuzzy context: taxonomy, analysis framework AFRYCA and experimental case of study. Inf Fusion. 2014;20:252–71.

    Google Scholar 

  36. Ye J. Subtraction and division operations of simplified neutrosophic sets. Information. 2017;8(2):51.

    Google Scholar 

  37. Herrera-Viedma E, Herrera F, Chiclana F. A consensus model for multiperson decision making with different preference structures. IEEE Trans Syst Man Cybern Part A. 2002;32(3):394–402.

    MATH  Google Scholar 

  38. Ye J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J Intell Fuzzy Syst. 2014;26(5):2459–66.

    MathSciNet  MATH  Google Scholar 

  39. Shapley LS. A value for n-person games. Contrib Theory Games. 1953;2(28):307–17.

    MathSciNet  MATH  Google Scholar 

  40. Marichal JL. The influence of variables on pseudo-Boolean functions with applications to game theory and multicriteria decision making. Discret Appl Math. 2000;107:139–64.

    MathSciNet  MATH  Google Scholar 

  41. Grabisch M. Fuzzy integral in multicriteria decision making. Fuzzy Sets Syst. 1995;69(3):279–98.

    MathSciNet  MATH  Google Scholar 

  42. Büyüközkan G, Göçer F, Uztürk D. A novel Pythagorean fuzzy set integrated Choquet integral approach for vertical farming technology assessment. Comput Ind Eng. 2021. https://doi.org/10.1007/s11042-021-11304-1.

    Article  Google Scholar 

  43. Tian G, et al. Fuzzy grey choquet integral for evaluation of multicriteria decision making problems with interactive and qualitative indices. IEEE Trans Syst Man Cybern Syst. 2021;51:1855–181868.

    Google Scholar 

  44. Choquet G. Theory of capacities. Ann Inst Fourier. 1954;5:131–295.

    MathSciNet  MATH  Google Scholar 

  45. Deng JL. Introduction to grey system theory. J Grey Syst. 1989;1(1):1–24.

    MathSciNet  MATH  Google Scholar 

  46. Biswas P, Pramanik S, Giri BC. TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput Appl. 2016;27(3):727–37.

    Google Scholar 

  47. Ji P, Zhang H, Wang J. A projection-based TODIM method under multi-valued neutrosophic environments and its application in personnel selection. Neural Comput Appl. 2018;29(1):221–34.

    Google Scholar 

  48. Mata F, Martinez L, Herrera-Viedma E. An adaptive consensus support model for group decision-making problems in a multigranular fuzzy linguistic context. IEEE Trans Fuzzy Syst. 2009;17:279–90.

    Google Scholar 

  49. Dong Y, Zhao S, Zhang H, Chiclana F, Herrera-Viedma E. A self-management mechanism for noncooperative behaviors in large-scale group consensus reaching processes. IEEE Trans Fuzzy Syst. 2018;26(6):3276–88.

    Google Scholar 

  50. Wu J, Chiclana F, Fujita H, Herrera-Viedma E. A visual interaction consensus model for social network group decision making with trust propagation. Knowl-Based Syst. 2017;122:39–50.

    Google Scholar 

  51. Teruel KP, Cedeno JC, Gavilanez HL, Diaz CB. A framework for selecting cloud computing services based on consensus under single valued neutrosophic numbers. Neutrosophic Sets Syst. 2018;22(1):39–49.

    Google Scholar 

  52. Cheng S, Cheng S, Lin T. Group decision making systems using group recommendations based on interval fuzzy preference relations and consistency matrices. Inf Sci. 2015;298:555–67.

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China under Grant No. 71571019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujun Hou.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Based on the Definition 6, \(X = \left\{ {R_{1} ,R_{2} ,R_{3} } \right\}\), we can obtain the following cases of Shapely values:

  1. (1)

    \(S = \left\{ {R_{1} } \right\}\)\(T = \emptyset\)\(T = \left\{ {R_{2} ,R_{3} } \right\}\)\(T = \left\{ {R_{2} } \right\}\), \(T = \left\{ {R_{3} } \right\}\),

    \(\varphi_{{R_{1} }} \left( {\mu ,E} \right) =\)\(\frac{1}{3}\left[ {\mu \left( {R_{1} } \right) + 1 - \mu \left( {R_{2} ,R_{3} } \right)} \right] +\)\(\frac{1}{6}\left[ {\mu \left( {R_{1} ,R_{2} } \right) - \mu \left( {R_{2} } \right) + \mu \left( {R_{1} ,R_{3} } \right) - \mu \left( {R_{3} } \right)} \right]\);

  2. (2)

    \(S = \left\{ {R_{2} } \right\}\)\(T = \emptyset\), \(T = \left\{ {R_{1} ,R_{3} } \right\}\)\(T = \left\{ {R_{1} } \right\}\)\(T = \left\{ {R_{3} } \right\}\)

    \(\varphi_{{R_{2} }} \left( {\mu ,E} \right) =\)\(\frac{1}{3}\left[ {\mu \left( {R_{2} } \right) + 1 - \mu \left( {R_{1} ,R_{3} } \right)} \right] +\)\(\frac{1}{6}\left[ {\mu \left( {R_{1} ,R_{2} } \right) - \mu \left( {R_{1} } \right) + \mu \left( {R_{2} ,R_{3} } \right) - \mu \left( {R_{3} } \right)} \right]\);

  3. (3)

    \(S = \left\{ {R_{3} } \right\}\)\(T = \emptyset\)\(T = \left\{ {R_{1} ,R_{2} } \right\}\)\(T = \left\{ {R_{1} } \right\}\)\(T = \left\{ {R_{2} } \right\}\) \(\varphi_{{R_{3} }} \left( {\mu ,E} \right) =\)\(\frac{1}{3}\left[ {\mu \left( {R_{3} } \right) + 1 - \mu \left( {R_{1} ,R_{2} } \right)} \right] +\)\(\frac{1}{6}\left[ {\mu \left( {R_{1} ,R_{3} } \right) - \mu \left( {R_{1} } \right) + \mu \left( {R_{2} ,R_{3} } \right) - \mu \left( {R_{2} } \right)} \right]\);

  4. (4)

    \(S = \left\{ {R_{1} ,R_{{2}} } \right\}\)\(T = \left\{ {R_{3} } \right\}\), \(T = \emptyset\), \(\varphi_{{\left\{ {R_{1} ,R_{{2}} } \right\}}}\)\(\left( {\mu ,E} \right) = \frac{1}{{2}}\left[ {1 - \mu \left( {R_{3} } \right) + \mu \left( {R_{1} ,R_{{2}} } \right)} \right]\);

  5. (5)

    \(S = \left\{ {R_{1} ,R_{{3}} } \right\}\),\(T = \left\{ {R_{2} } \right\}\), \(T = \emptyset ,\varphi_{{\left\{ {R_{1} ,R_{3} } \right\}}}\)\(\left( {\mu ,E} \right) = \frac{1}{{2}}\left[ {1 - \mu \left( {R_{2} } \right) + \mu \left( {R_{1} ,R_{3} } \right)} \right]\); and

  6. (6)

    \(S = \left\{ {R_{2} ,R_{{3}} } \right\}\)\(T = \left\{ {R_{1} } \right\}\), \(T = \emptyset\)\(\varphi_{{\left\{ {R_{2} ,R_{3} } \right\}}} \left( {\mu ,E} \right) = \frac{1}{{2}}\left[ {1 - \mu \left( {R_{1} } \right) + \mu \left( {R_{2} ,R_{3} } \right)} \right]\).

Then, the grey relational coefficient \(\varsigma_{ij}^{k}\) can be obtained by Eq. (14) (\(\varepsilon = 0.5\)), and the objective function is calculated as follows:

$$\begin{aligned}\sum\limits_{i = 1}^{5} {\sum\limits_{k = 1}^{3} {\varsigma_{ij}^{k} \varphi_{j} \left( {\mu_{j} ,R} \right)} } & = \varphi_{{R_{1} }} \sum\limits_{i = 1}^{5} {\varsigma_{i1}^{1} } + \varphi_{{R_{2} }} \sum\limits_{i = 1}^{5} {\varsigma_{i1}^{2} } \varsigma_{11}^{2} \varphi_{{R_{2} }} + \varphi_{{R_{3} }} \sum\limits_{i = 1}^{5} {\varsigma_{i1}^{3} } \\ &= 4.64\varphi_{{R_{1} }} \left( {\mu ,E} \right) + 4.533\varphi_{{R_{2} }} \left( {\mu ,E} \right) + 4.075\varphi_{{R_{{3}} }} \left( {\mu ,E} \right) \\ &= \frac{4.64}{3} \left[ {\mu \left( {R_{1} } \right) + 1 - \mu \left( {R_{2} ,R_{3} } \right)} \right] + \frac{4.64}{6}\left[ {\mu \left( {R_{1} ,R_{2} } \right) - \mu \left( {R_{2} } \right) + \mu \left( {R_{1} ,R_{3} } \right) - \mu \left( {R_{3} } \right)} \right] \\ &{}\quad\begin{aligned} &+ \frac{4.533}{3}\left[ {\mu \left( {R_{2} } \right) + 1 - \mu \left( {R_{1} ,R_{3} } \right)} \right] \\ &+ \frac{4.533}{6}\left[ {\mu \left( {R_{1} ,R_{2} } \right) - \mu \left( {R_{1} } \right) + \mu \left( {R_{2} ,R_{3} } \right) - \mu \left( {R_{3} } \right)} \right] \frac{4.075}{3}\left[ {\mu \left( {R_{3} } \right) + 1 - \mu \left( {R_{1} ,R_{2} } \right)} \right] \\ &+ \frac{4.075}{6}\left[ {\mu \left( {R_{1} ,R_{3} } \right) - \mu \left( {R_{1} } \right) + \mu \left( {R_{2} ,R_{3} } \right) - \mu \left( {R_{2} } \right)} \right] \end{aligned} \\ &= \left( {\frac{4.64}{3} - \frac{4.533}{6} - \frac{4.075}{6}} \right)\mu \left( {R_{1} } \right) + \left( {\frac{4.533}{3} - \frac{4.64}{6} - \frac{4.075}{6}} \right)\mu \left( {R_{2} } \right) + \left( {\frac{4.075}{3} - \frac{4.64}{6} - \frac{4.533}{6}} \right)\mu \left( {R_{3} } \right) \\ &{}\quad\begin{aligned} &+ \frac{4.64}{3} + \frac{4.533}{{3}} + \frac{4.075}{{3}} + \left( {\frac{4.64}{6} + \frac{4.533}{6} - \frac{4.075}{3}} \right)\mu \left( {R_{1} ,R_{2} } \right) + \left( {\frac{4.64}{6} + \frac{4.075}{6} - \frac{4.533}{3}} \right)\mu \left( {R_{1} ,R_{3} } \right) \\ &+ \left( {\frac{4.533}{6} + \frac{4.075}{6} - \frac{4.64}{3}} \right)\mu \left( {R_{2} ,R_{3} } \right) = 0.112\left( {\mu \left( {R_{1} } \right) - \mu \left( {R_{2} ,R_{3} } \right)} \right) \\ &+ 0.0585\left( {\mu \left( {R_{2} } \right) - \mu \left( {R_{1} ,R_{3} } \right)} \right) - 0.1705\left( {\mu \left( {R_{3} } \right) - \mu \left( {R_{1} ,R_{2} } \right)} \right) + {4}{\text{.416}}\end{aligned}\end{aligned}$$

According to the programming model (15), there is

$$\begin{array}{l}\max = 0.112\left[ {\mu_{{1}} \left( {R_{1} } \right) - \mu_{{1}} \left( {R_{2} ,R_{3} } \right)} \right] + 0.059\left[ {\mu_{{1}} \left( {R_{{2}} } \right) - \mu_{{1}} \left( {R_{{1}} ,R_{3} } \right)} \right] - 0.171\left[ {\mu_{{1}} \left( {R_{{3}} } \right) - \mu_{{1}} \left( {R_{{1}} ,R_{{2}} } \right)} \right] + 4.416\\ \quad s.t.\left\{ \begin{array}{l} \mu_{1} \left( \phi \right) = 0,\mu_{1} \left( {R_{1} ,R_{2} ,R_{3} } \right) = 1, \hfill \\ \mu_{1} \left( S \right) \le \mu_{1} \left( T \right),\forall S,T \subseteq R,S \subseteq T, \hfill \\ \mu_{1} \left( {R_{1} } \right) \in \left[ {0.3,0.4} \right],\mu_{1} \left( {R_{2} } \right) \in \left[ {0.35,0.45} \right],\mu_{1} \left( {R_{3} } \right) \in \left[ {0.2,0.3} \right]. \hfill \\ \end{array} \right.\end{array}$$

We can solve the above model by Lingo software and obtain fuzzy measure of experts as follows:

$$\begin{array}{l}\mu_{{1}} \left( {R_{1} } \right) = \mu_{{1}} \left( {R_{2} } \right) = \mu_{{1}} \left( {R_{1} ,R_{3} } \right) = \mu_{{1}} \left( {R_{2} ,R_{3} } \right) = 0.35,\\\mu_{{1}} \left( {R_{{3}} } \right) = 0.2,\mu_{{1}} \left( {R_{{1}} ,R_{2} } \right) = \mu_{{1}} \left( {R_{{1}} ,R_{2} ,R_{3} } \right) = 1\end{array}$$

In the same way, we also get the optimal fuzzy measures on the expert set R for the criteria \(C_{j}\), \(\left( {j = 2,3,{4}} \right)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, X., Hou, F. & Lou, Z. Consensus Building in Multi-criteria Group Decision-Making with Single-Valued Neutrosophic Sets. Cogn Comput 13, 1496–1514 (2021). https://doi.org/10.1007/s12559-021-09913-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-021-09913-x

Keywords

Navigation