Skip to main content
Log in

One-Stage Multi-view Clustering with Hierarchical Attributes Extraction

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Multi-view clustering (MVC) has received significant attention, and obtained praiseworthy performance improvement in comparison with signal-view clustering, since it can effectively take advantage of the underlying correlation and structure information of multi-view data. However, existing methods only utilize signal-layer mapping to exploit clustering information, and ignore the underlying hierarchical attribute information in complex and interleaved multi-view data. In this work, we propose a novel MVC method, one-stage multi-view clustering with hierarchical attributes extracting (OS-HAE), to exploit the underlying hierarchical attributes for MVC. Specifically, we learn multiple latent representations from each view by a novel deep matrix factorization (DMF) framework with a layer-wise scheme, so that the learned representations can contain the hierarchical attribute information of original multi-view data. In addition, the samples from the same clusters but from different views are forced to be closer, and samples from different cluster are away from each other in the latent low-dimensional space. Furthermore, we introduce local manifold learning to guide DMF, such that the deepest representations can preserve structure information of original data. Meanwhile, a novel auto-weighted spectral rotating fusion (ASRF) paradigm is proposed to obtain the final clustering indicator matrix directly, so that OS-HAE can avoid obtaining suboptimal results caused by a two-stage strategy. Then, an alternate algorithm is designed to solve the objective function. Experimental results on six datasets demonstrate the advancement and effectiveness of the proposed OS-HAE. Consequently, the proposed method can effectively exploit the hierarchical information of multi-view to improve clustering performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Dai J, Ren Z, Luo Y, Song H, Yang J. Multi-view clustering with latent low-rank proxy graph learning. Cogn Comput. 2021;13(4):1049–60.

    Article  Google Scholar 

  2. Liu J, Liu X, Wang S, Zhou S, Yang Y. Hierarchical multiple kernel clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2021. p. 8671–9. (vol 35).

  3. Zhang C, Cui Y, Han Z, Zhou JT, Fu H, Hu Q. Deep partial multi-view learning. IEEE Trans Pattern Anal Mach Intell. 2022;44(5):2402–15.

    Google Scholar 

  4. Huang S, Kang Z, Xu Z, Liu Q. Robust deep k-means: an effective and simple method for data clustering. Pattern Recogn. 2021;117:107996.

  5. Lin Z, Kang Z. Graph filter-based multi-view attributed graph clustering. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI. 2021. p. 19–26.

  6. Huang S, Xu Z, Tsang IW, Kang Z. Auto-weighted multi-view co-clustering with bipartite graphs. Inf Sci. 2020;512:18–30.

    Article  MathSciNet  MATH  Google Scholar 

  7. Tang C, Liu X, Wang P, Zhang C, Li M, Wang L. Adaptive hypergraph embedded semi-supervised multi-label image annotation. IEEE Trans Multimedia. 2019;21(11):2837–49.

    Article  Google Scholar 

  8. Lv J, Kang Z, Lu X, Xu Z. Pseudo-supervised deep subspace clustering. IEEE Trans Image Process. 2021;30:5252–63.

    Article  Google Scholar 

  9. Li Y, Hu P, Liu Z, Peng D, Zhou JT, Peng X. Contrastive clustering. Proceedings of the AAAI Conference on Artificial Intelligence. 2021;35:8547–55.

    Article  Google Scholar 

  10. Nie F, Shi S, Li X. Auto-weighted multi-view co-clustering via fast matrix factorization. Pattern Recogn. 2020;102:107207.

  11. Du S, Liu Z, Chen Z, Yang W, Wang S. Differentiable bi-sparse multi-view co-clustering. IEEE Trans Signal Process. 2021;69:4623–36.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ren Z, Sun Q. Simultaneous global and local graph structure preserving for multiple kernel clustering. IEEE Trans Neural Netw Learn Syst. 2020;32(5):1839–51.

    Article  MathSciNet  Google Scholar 

  13. Ren Z, Yang SX, Sun Q, Wang T. Consensus affinity graph learning for multiple kernel clustering. IEEE Trans Cybern. 2020a;51(6):3273–3284.

  14. Ren Z, Mukherjee M, Bennis M, Lloret J. Multikernel clustering via non-negative matrix factorization tailored graph tensor over distributed networks. IEEE J Sel Areas Commun. 2020b;39(7):1946–1956.

  15. Zhang T, Liu X, Gong L, Wang S, Niu X, Shen L. Late fusion multiple kernel clustering with local kernel alignment maximization. IEEE Trans Multimedia. 2021.

  16. Ren Z, Sun Q, Wei D. Multiple kernel clustering with kernel k-means coupled graph tensor learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2021. p. 9411–8. (vol 35).

  17. Huang S, Tsang I, Xu Z, Lv JC. Measuring diversity in graph learning: a unified framework for structured multi-view clustering. IEEE Trans Knowl Data Eng. 2021.

  18. Lin Z, Kang Z, Zhang L, Tian L. Multi-view attributed graph clustering. IEEE Trans Knowl Data Eng. 2021.

  19. Wang H, Yang Y, Liu B. GMC: graph-based multi-view clustering. IEEE Trans Knowl Data Eng. 2019;32(6):1116–29.

    Article  Google Scholar 

  20. Pan E, Kang Z. Multi-view contrastive graph clustering. Adv Neural Inf Process Syst. 2021;34:2148–59.

    Google Scholar 

  21. Kang Z, Peng C, Cheng Q, Liu X, Peng X, Xu Z, Tian L. Structured graph learning for clustering and semi-supervised classification. Pattern Recogn. 2021;110:107627.

  22. Chen MS, Huang L, Wang CD, Huang D. Multi-view clustering in latent embedding space. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020. p. 3513–20. (vol 34).

  23. Lv J, Kang Z, Wang B, Ji L, Xu Z. Multi-view subspace clustering via partition fusion. Inf Sci. 2021;560:410–23.

    Article  MathSciNet  Google Scholar 

  24. Zhao H, Ding Z, Fu Y. Multi-view clustering via deep matrix factorization. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2017. p. 2921–7. (vol 31).

  25. Liang N, Yang Z, Li Z, Sun W, Xie S. Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints. Knowl-Based Syst. 2020;194:105582.

  26. Liu J, Wang C, Gao J, Han J. Multi-view clustering via joint nonnegative matrix factorization. In: Proceedings of the 2013 SIAM International Conference on Data Mining, SIAM. 2013. p 252–60.

  27. Liu J, Liu X, Yang Y, Liu L, Wang S, Liang W, Shi J. One-pass multi-view clustering for large-scale data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021. p 12344–53.

  28. Li G, Geng J, Liu J, Han K. Multi-graph constraint matrix factorization for multi-view image clustering. In: 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE). IEEE; 2020. p. 415–18.

  29. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature. 1999;401(6755):788–91.

    Article  MATH  Google Scholar 

  30. Cai X, Nie F, Huang H. Multi-view k-means clustering on big data. In: Proceedings of the Twenty-Third International Joint Conference On Artificial Intelligence. 2013. p. 2598–604.

  31. Nie F, Shi S, Li J, Li X. Implicit weight learning for multi-view clustering. IEEE Trans Neural Netw Learn Syst. 2021.

  32. Huang S, Kang Z, Xu Z. Deep k-means: a simple and effective method for data clustering. In: International Conference on Neural Computing for Advanced Applications. Springer; 2020. p. 272–83.

  33. Wu T, Zhang R, Jiao Z, Wei X, Li X. Adaptive spectral rotation via joint cluster and pairwise structure. IEEE Trans Knowl Data Eng. 2021.

  34. Zong L, Zhang X, Zhao L, Yu H, Zhao Q. Multi-view clustering via multi-manifold regularized non-negative matrix factorization. Neural Netw. 2017;88:74–89.

    Article  MATH  Google Scholar 

  35. Ren Z, Mukherjee M, Lloret J, Venu P. Multiple kernel driven clustering with locally consistent and selfish graph in industrial IoT. IEEE Trans Industr Inf. 2020;17(4):2956–63.

    Article  Google Scholar 

  36. Ding CH, Li T, Jordan MI. Convex and semi-nonnegative matrix factorizations. IEEE Trans Pattern Anal Mach Intell. 2008;32(1):45–55.

    Article  Google Scholar 

  37. Xu B, Zeng Z, Lian C, Ding Z. Semi-supervised low-rank semantics grouping for zero-shot learning. IEEE Trans Image Process. 2021;30:2207–19.

    Article  Google Scholar 

  38. Liu X, Liu L, Liao Q, Wang S, Zhang Y, Tu W, Tang C, Liu J, Zhu E. One pass late fusion multi-view clustering. In: International Conference on Machine Learning, PMLR. 2021. p. 6850–59.

  39. Zhang C, Hu Q, Fu H, Zhu P, Cao X. Latent multi-view subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. p. 4279–87.

  40. Tang C, Liu X, Zhu X, Zhu E, Luo Z, Wang L, Gao W. CGD: multi-view clustering via cross-view graph diffusion. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020. p. 5924–31. (vol 34).

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 62106209), the Public Welfare Technology Application Research Project of Zhejiang Province, China (Grant No. LGF21F020003), the Open Project Program of the State Key Lab of CAD &CG (Grant No. A2217), and the Natural Science Foundation of Southwest University of Science and Technology (Grant No. 22zx7101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenwen Ren or Xiaojian You.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Y., Dai, J., Ren, Z. et al. One-Stage Multi-view Clustering with Hierarchical Attributes Extraction. Cogn Comput 15, 552–564 (2023). https://doi.org/10.1007/s12559-022-10060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-022-10060-0

Keywords

Navigation