Skip to main content

Advertisement

Log in

A Multi-attention Triple Decoder Deep Convolution Network for Breast Cancer Segmentation Using Ultrasound Images

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is a widely diagnosed deadly disease commonly present in middle-aged women around the globe. Ultrasound (U/S) imaging is widely used for the early prediction and segmentation of BC due to low radiation and cheapness. Manual BC segmentation from ultrasound imaging is a complex and laborious task due to inherited noise. Many deep learning-based breast cancer diagnostic methods are presented that can further be enhanced to improve the segmentation performance. This work proposed a U-shaped auto encoder-based multi-attention triple decoder convolution neural network for BC segmentation from U/S images. To capture multi-scale diverse spatial image features this work introduced a multi-scale convolution operation-based encoder network. To process the multi-scale learned diverse spatial features in the encoder path multi-scale triple decoder network is designed that was not found in earlier studies. To highlight the tumor region at different scales multi-attention mechanism is introduced in each decoder network. The multi-attention mechanism is designed to suppress the other region information and to highlight the tumor region features at different scales. The proposed deep network produced the segmentation dice of 90.45% on the UDIAT dataset and the segmentation dice of 89.13% on the BUSI dataset. The testing Jaccard index of 83.40% is recorded on the UDIAT dataset and a Jaccard index of 82.31% is recorded on the BUSI dataset. The result comparison with existing methods shows that our method achieved the highest results. The segmentation performance of the triple decoder-based BC segmentation model suggested that it can effectively be used to automate the manual breast cancer segmentation task from ultrasound images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

This study utilized two publicly available datasets including the BUSI dataset by Dhabyani et al. [34] available at https://scholar.cu.edu.eg/?q=afahmy/pages/dataset and the UDIAT dataset B which can be accessed by mailing the principal author of the study Yap et al. [35].

References

  1. Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, Jemal A, Siegel RL. Breast cancer statistics. CA Cancer J Clin. 2022. https://doi.org/10.3322/caac.21754.

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  Google Scholar 

  3. Alanazi SA, Kamruzzaman MM, Islam Sarker MN, Alruwaili M, Alhwaiti Y, Alshammari N, Siddiqi MH. Boosting breast cancer detection using convolutional neural network. J Healthc Eng. 2021;2021:1–11. https://doi.org/10.1155/2021/5528622.

    Article  Google Scholar 

  4. Murtaza G, Shuib L, Wahab AWA, Mujtaba G, Nweke HF, Al-garadi MA, Zulfiqar F, Raza G, Azmi NA. Deep learning-based breast cancer classification through medical imaging modalities: state of the art and research challenges. Artif Intell Rev. 2019;1–66.

  5. Debelee TG, Schwenker F, Ibenthal A, Yohannes D. Survey of deep learning in breast cancer image analysis. Evol Syst. 2020;11:143–63.

    Article  Google Scholar 

  6. Sabtu SN, Abdul Sani SF, Bradley DA, Looi LM, Osman Z. A review of the applications of Raman spectroscopy for breast cancer tissue diagnostic and their histopathological classification of epithelial to mesenchymal transition. J Raman Spectrosc. 2020;51:380–9.

    Article  Google Scholar 

  7. Umer MJ, Sharif M, Kadry S, Alharbi A. Multi-class classification of breast cancer using 6B-Net with deep feature fusion and selection method. J Pers Med. 2022;12:683. https://doi.org/10.3390/jpm12050683.

    Article  Google Scholar 

  8. Jahwar AF, Abdulazeez AM. Segmentation and classification for breast cancer ultrasound images using deep learning techniques: a review. In: 2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA). IEEE. 2022;225–230

  9. Umer MJ, Sharif M, Wang S-H. Breast cancer classification and segmentation framework using multiscale CNN and U-shaped dual decoded attention network. Expert Syst n/a:e13192. https://doi.org/10.1111/exsy.13192.

  10. Vigil N, Barry M, Amini A, Akhloufi M, Maldague XPV, Ma L, Ren L, Yousefi B. Dual-intended deep learning model for breast cancer diagnosis in ultrasound imaging. Cancers. 2022;14:2663. https://doi.org/10.3390/cancers14112663.

    Article  Google Scholar 

  11. Wang Q, Chen H, Luo G, Li B, Shang H, Shao H, Sun S, Wang Z, Wang K, Cheng W. Performance of novel deep learning network with the incorporation of the automatic segmentation network for diagnosis of breast cancer in automated breast ultrasound. Eur Radiol. 2022;32:7163–72. https://doi.org/10.1007/s00330-022-08836-x.

    Article  Google Scholar 

  12. Ayana G, Park J, Jeong J-W, Choe S. A novel multistage transfer learning for ultrasound breast cancer image classification. Diagnostics. 2022;12:135. https://doi.org/10.3390/diagnostics12010135.

    Article  Google Scholar 

  13. Umer M, Sharif M, Alhaisoni M, Tariq U, Kim Y, Chang B. A framework of deep learning and selection-based breast cancer detection from histopathology images. Comput Syst Sci Eng.  2022;45:1001–1016. https://doi.org/10.32604/csse.2023.030463.

  14. Baccouche A, Garcia-Zapirain B, Castillo Olea C, Elmaghraby AS. Connected-UNets: a deep learning architecture for breast mass segmentation. Npj Breast Cancer. 2021;7:1–12. https://doi.org/10.1038/s41523-021-00358-x.

    Article  Google Scholar 

  15. Luo Y, Huang Q, Li X. Segmentation information with attention integration for classification of breast tumor in ultrasound image. Pattern Recognit. 2022;124: 108427. https://doi.org/10.1016/j.patcog.2021.108427.

    Article  Google Scholar 

  16. Yan Y, Liu Y, Wu Y, Zhang H, Zhang Y, Meng L. Accurate segmentation of breast tumors using AE U-net with HDC model in ultrasound images. Biomed Signal Process Control. 2022;72: 103299. https://doi.org/10.1016/j.bspc.2021.103299.

    Article  Google Scholar 

  17. Chen G, Dai Y, Zhang J. C-Net: Cascaded convolutional neural network with global guidance and refinement residuals for breast ultrasound images segmentation. Comput Methods Programs Biomed. 2022;225: 107086. https://doi.org/10.1016/j.cmpb.2022.107086.

    Article  Google Scholar 

  18. Iqbal A, Sharif M. MDA-Net: multiscale dual attention-based network for breast lesion segmentation using ultrasound images. J King Saud Univ - Comput Inf Sci. 2021;S1319157821002895. https://doi.org/10.1016/j.jksuci.2021.10.002.

  19. Farooq MA, Gong ZX, Liu Y, Zubair M, Manzoor A, Zhang G. Breast cancer detection from ultrasound images using attention U-nets model. In: Fourteenth International Conference on Digital Image Processing (ICDIP 2022). SPIE. 2022;161–174.

  20. Tong Y, Liu Y, Zhao M, Meng L, Zhang J. Improved U-net MALF model for lesion segmentation in breast ultrasound images. Biomed Signal Process Control. 2021;68: 102721. https://doi.org/10.1016/j.bspc.2021.102721.

    Article  Google Scholar 

  21. Meraj T, Alosaimi W, Alouffi B, Rauf HT, Kumar SA, Damaševičius R, Alyami H. A quantization assisted U-Net study with ICA and deep features fusion for breast cancer identification using ultrasonic data. PeerJ Comput Sci. 2021;7: e805.

    Article  Google Scholar 

  22. Vianna P, Farias R, de Albuquerque Pereira WC. U-Net and SegNet performances on lesion segmentation of breast ultrasonography images. Res Biomed Eng. 2021;37:171–9. https://doi.org/10.1007/s42600-021-00137-4.

    Article  Google Scholar 

  23. Sannasi Chakravarthy SR, Rajaguru H. SKMAT-U-Net architecture for breast mass segmentation. Int J Imaging Syst Technol. 2022;32:1880–8. https://doi.org/10.1002/ima.22781.

    Article  Google Scholar 

  24. Zhao T, Dai H. Breast tumor ultrasound image segmentation method based on improved residual U-Net network. Comput Intell Neurosci. 2022;2022: e3905998. https://doi.org/10.1155/2022/3905998.

    Article  Google Scholar 

  25. Li J, Cheng L, Xia T, Ni H, Li J. Multi-scale fusion U-Net for the segmentation of breast lesions. IEEE Access. 2021;9:137125–39. https://doi.org/10.1109/ACCESS.2021.3117578.

    Article  Google Scholar 

  26. Lu S-Y, Wang S-H, Zhang Y-D. SAFNet: a deep spatial attention network with classifier fusion for breast cancer detection. Comput Biol Med. 2022;148: 105812. https://doi.org/10.1016/j.compbiomed.2022.105812.

    Article  Google Scholar 

  27. Punn NS, Agarwal S. RCA-IUnet: a residual cross-spatial attention-guided inception U-Net model for tumor segmentation in breast ultrasound imaging. Mach Vis Appl. 2022;33:27. https://doi.org/10.1007/s00138-022-01280-3.

    Article  Google Scholar 

  28. Wang Y, Yao Y. Breast lesion detection using an anchor-free network from ultrasound images with segmentation-based enhancement. Sci Rep. 2022;12:14720. https://doi.org/10.1038/s41598-022-18747-y.

    Article  Google Scholar 

  29. Wang J, Chen G, Chen S, Joseph Raj AN, Zhuang Z, Xie L, Ma S. Ultrasonic breast tumor extraction based on adversarial mechanism and active contour. Comput Methods Programs Biomed. 2022;225: 107052. https://doi.org/10.1016/j.cmpb.2022.107052.

    Article  Google Scholar 

  30. Woon Cho S, Rae Baek N, Ryoung Park K. Deep learning-based multi-stage segmentation method using ultrasound images for breast cancer diagnosis. J King Saud Univ - Comput Inf Sci. 2022. https://doi.org/10.1016/j.jksuci.2022.10.020.

    Article  Google Scholar 

  31. Gong X, Zhao X, Fan L, Li T, Guo Y, Luo J. BUS-net: a bimodal ultrasound network for breast cancer diagnosis. Int J Mach Learn Cybern. 2022;13:3311–28. https://doi.org/10.1007/s13042-022-01596-6.

    Article  Google Scholar 

  32. Peng C, Zhang Y, Meng Y, Yang Y, Qiu B, Cao Y, Zheng J. LMA-Net: A lesion morphology aware network for medical image segmentation towards breast tumors. Comput Biol Med. 2022;147: 105685. https://doi.org/10.1016/j.compbiomed.2022.105685.

    Article  Google Scholar 

  33. Lou M, Meng J, Qi Y, Li X, Ma Y. MCRNet: multi-level context refinement network for semantic segmentation in breast ultrasound imaging. Neurocomputing. 2022;470:154–69. https://doi.org/10.1016/j.neucom.2021.10.102.

    Article  Google Scholar 

  34. Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data Brief. 2020;28: 104863. https://doi.org/10.1016/j.dib.2019.104863.

    Article  Google Scholar 

  35. Yap MH, Pons G, Martí J, Ganau S, Sentís M, Zwiggelaar R, Davison AK, Martí R. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform. 2018;22:1218–26. https://doi.org/10.1109/JBHI.2017.2731873.

    Article  Google Scholar 

  36. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234–41.

    Chapter  Google Scholar 

  37. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, Martel A, Maier-Hein L, Tavares JMRS, Bradley A, Papa JP, Belagiannis V, Nascimento JC, Lu Z, Conjeti S, Moradi M, Greenspan H, Madabhushi A, editors. Deep Learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer International Publishing; 2018. p. 3–11.

    Chapter  Google Scholar 

  38. Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV). 2018;801–818.

  39. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017;2881–2890.

  40. Su R, Zhang D, Liu J, Cheng C. MSU-net: multi-scale U-net for 2D medical image segmentation. Front Genet. 2021;12: 639930.

    Article  Google Scholar 

  41. Shareef B, Vakanski A, Xian M, Freer PE. ESTAN: enhanced small tumor-aware network for breast ultrasound image segmentation. ArXiv Prepr. 2020;ArXiv200912894.

  42. Yang K, Suzuki A, Ye J, Nosato H, Izumori A, Sakanashi H. CTG-Net: Cross-task guided network for breast ultrasound diagnosis. PLoS ONE. 2022;17: e0271106.

    Article  Google Scholar 

  43. Zhang M, Huang A, Yang D, Xu R, Wu Y. Boundary-oriented network for automatic breast tumor segmentation in ultrasound images. Available SSRN 4098691.

  44. Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Lu L, Yuille AL, Zhou Y. TransUNet: transformers make strong encoders for medical image segmentation. 2021.

  45. Zhao X, Jia H, Pang Y, Lv L, Tian F, Zhang L, Sun W, Lu H. M$^{2}$SNet: multi-scale in multi-scale subtraction network for medical image segmentation. 2023.

  46. Shareef B, Xian M, Vakanski A. STAN: small tumor-aware network for breast ultrasound image segmentation. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE. 2020;1–5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sharif.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants performed by any of the authors.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umer, M.J., Sharif, M. & Raza, M. A Multi-attention Triple Decoder Deep Convolution Network for Breast Cancer Segmentation Using Ultrasound Images. Cogn Comput 16, 581–594 (2024). https://doi.org/10.1007/s12559-023-10214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-023-10214-8

Keywords

Navigation