Skip to main content
Log in

Machine Un-learning: An Overview of Techniques, Applications, and Future Directions

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

ML applications proliferate across various sectors. Large internet firms employ ML to train intelligent models using vast datasets, including sensitive user information. However, new regulations like GDPR require data removal by businesses. Deleting data from ML models is more complex than databases. Machine Un-learning (MUL), an emerging field, garners academic interest for selectively erasing learned data from ML models. MUL benefits multiple disciplines, enhancing privacy, security, usability, and accuracy. This article reviews MUL’s significance, providing a taxonomy and summarizing key MUL algorithms. We categorize modern MUL models by criteria, including model independence, data driven, and implementation considerations. We explore MUL applications in smart devices and recommendation systems. We also identify open questions and future research areas. This work advances methods for implementing regulations like GDPR and safeguarding user privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

References

  1. Goldsteen A, Ezov G, Shmelkin R, Moffie M, Farkash A. Data minimization for gdpr compliance in machine learning models. AI and Ethics. 2021;1–15.

  2. Mourby M, Cathaoir KO´, Collin CB. Transparency of machine-learning in healthcare: The gdpr & european health law. Comput Law Secur Rev. 2021;43:105611.

  3. General data protection regulation (gdpr) – official legal text. https://gdpr-info.eu/. Accessed 23 Jun 2023.

  4. Everything you need to know about the right to be forgotten - gdpr.eu. https://gdpr.eu/right-to-be-forgotten/. Accessed 23 Jun 2023.

  5. Is the ‘right to be forgotten’ a fundamental right? https://timesofindia.indiatimes.com/readersblog/myblogpost/is-the-right-to-be-forgotten-a-fundamental-right-52529/. Accessed 23 Jun 2023.

  6. Voigt P, Von A, dem Bussche, The EU general data protection regulation (gdpr), A Practical Guide, 1st Ed., Cham: Springer Inter- national Publishing. 2017;10(3152676):10–5555.

  7. Strobel M, Aspects of transparency in machine learning, in Proceed- ings of the 18th International Conference on Autonomous Agents and MultiAgent Systems. 2019;2449–2451.

  8. Lu¨ L, Medo M, Yeung CH, Zhang Y-C, Zhang Z-K, Zhou T. Recommender systems. Phys Rep. 2012;519(1):1–49.

  9. Resnick P, Varian HR. Recommender systems. Communica- tions of the ACM. 1997;40(3):56–8.

    Article  Google Scholar 

  10. Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: a survey. J Art Intell Res. 1996;4:237–85.

  11. Ullman RH. Redefining security. Int Secur. 1983;8(1):129–53.

    Article  MathSciNet  Google Scholar 

  12. Westin AF. Privacy and freedom. Washington and Lee Law Rev. 1968;25(1):166.

  13. Jordan PW. An introduction to usability. Crc Press. 1998.

  14. Facebook sued over Cambridge analytica data scandal - bbc news. https://www.bbc.com/news/technology-54722362. Accessed 23 Jun 2023.

  15. Google faces mass legal action in uk over data snooping - bbc news. https://www.bbc.com/news/technology-42166089. Accessed 23 Jun 2023.

  16. California consumer privacy act (CCPA) — state of California - Department of Justice - Office of the attorney general, https://oag.ca.gov/privacy/ccpa. Accessed 8 Jul 2023.

  17. World investment report 2020 — unctad. https://unctad.org/publication/world-investment-report-2020. Accessed 23 Jun 2023.

  18. Mutual legal assistance treaties — department of legal affairs, mol &j, goi. https://legalaffairs.gov.in/documents/mlat. Accessed 23 Jun 2023.

  19. Data protection committee report.pdf. https://www.meity.gov.in/writereaddata/files/DataProtectionommitteeReport.pdf. Accessed 23 Jun 2023.

  20. 4173ls(pre).p65. http://164.100.47.4/BillsTexts/LSBillTexts/Asintroduced/3732019LSEng.pdf. Accessed 23 Jun 2023.

  21. Explained: Indian government makes user data collection mandatory for vpns — business insider India. https://www.businessinsider.in/tech/news/. Continual lifelong learning with neural networks: A review. Neural Networks. 2019:113; 54–71.

  22. Mercuri S, Khraishi R, Okhrati R, Batra D, Hamill C, Ghasem- pour T, Nowlan A. An introduction to machine unlearning. arXiv preprint. http://arxiv.org/abs/2209.00939. 2022.

  23. Ayyagari R. An exploratory analysis of data breaches from 2005–2011: trends and insights. J Inf Priv Secur. 2012;8(2):33–56.

    Google Scholar 

  24. Li Y, Liu Q. A comprehensive review study of cyber-attacks and cyber security; emerging trends and recent developments. Energy Rep. 2021;7:8176–86.

    Article  Google Scholar 

  25. Sethuraman SC, Vijayakumar V, Walczak S. Cyber attacks on healthcare devices using unmanned aerial vehicles. J Med Syst. 2020;44(1):29.

    Article  Google Scholar 

  26. Right to privacy as a fundamental right.pdf. https://loksabhadocs.nic.in/Refinput/NewReferenceNotes/English/Right%20to%20Privacy%20as%20a%20fundamental%20Right.pdf. Accessed 23 Jun 2023.

  27. Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR). 2021;54(6):1–35.

    Article  Google Scholar 

  28. Hellstro¨m T, Dignum V, Bensch S. Bias in machine learning– what is it good for? arXiv preprint. http://arxiv.org/abs/2004.00686. 2020.

  29. Study finds a potential risk with self-driving cars: failure to detect dark-skinned pedestrians - vox. https://www.vox.com/future-perfect/2019/3/5/18251924/self-driving-car-racial-bias-study-autonomous-vehicle-dark-skin. Accessed 23 Jun 2023.

  30. Grover H, Alladi T, Chamola V, Singh D, Choo KK. Edge computing and deep learning enabled secure multitier network for internet of vehicles. IEEE Internet Things J. 2021;8(19):14787–14796.

  31. Zhou Z-H, Machine learning. Springer Nature. 2021.

  32. Mitchell TM, et al. Machine learning. McGraw-hill New York. 2007;1.

  33. El Naqa I, Murphy MJ. What is machine learning? Springer. 2015.

  34. Bottou L. Stochastic gradient descent tricks. Neural Networks: Tricks of the Trade: Second Edition. 2012;421–436.

  35. Kerr P. Adaptive learning. ELT J. 2016;70(1):88–93.

    Article  Google Scholar 

  36. Gupta V, Jung C, Neel S, Roth A, Sharifi-Malvajerdi S, Waites C. Adaptive machine unlearning. Adv Neural Inf Process Sys. 2021;34:16319–16 330.

  37. Ruder S. An overview of gradient descent optimization algorithms. arXiv preprint.http://arxiv.org/abs/1609.04747. 2016.

  38. Melnikov Y. Influence functions and matrices. CRC Press. 1998;119.

  39. Ketkar N, Ketkar N. Stochastic gradient descent. Deep learning with Python: a hands-on introduction. 2017;113–132.

  40. Tahiliani A, Hassija V, Chamola V, Guizani M. Machine unlearning: its need and implementation strategies, in 2021 Thirteenth International Conference on Contemporary Computing (IC3–2021), ser. IC3 ’21. New York, NY, USA: association for computing machinery. 2021;241–246. [Online]. Available: https://doi.org/10.1145/3474124.3474158.

  41. Sekhari A, Acharya J, Kamath G, Suresh AT. Remember what you want to forget: algorithms for machine unlearning. Advances in Neural Information Processing Systems. 2021;34: 18075–18086.

  42. Gill PE, Murray W, Wright MH. Practical optimization. SIAM. 2019.

  43. Bourtoule L, Chandrasekaran V, Choquette-Choo CA, Jia H, Travers A, Zhang B, Lie D, Papernot N, Machine unlearning, in,. IEEE Symposium on Security and Privacy (SP). IEEE. 2021;2021:141–59.

    Google Scholar 

  44. Warnecke A, Pirch L, Wressnegger C, Rieck K. Machine unlearning of features and labels. arXiv preprint. http://arxiv.org/abs/2108.11577. 2021.

  45. Welsch RE. Influence functions and regression diagnostics, in Modern data analysis. Elsevier. 1982;149–169.

  46. Covert I, Lundberg S, Lee S-I. Feature removal is a unifying principle for model explanation methods. arXiv preprint. http://arxiv.org/abs/2011.03623. 2020.

  47. Van Dyk DA, Meng X-L. The art of data augmentation. J Comput Graph Stat. 2001;10(1):1–50.

  48. Parisi GI, Kemker R, Part JL, Kanan C, Wermter S. https://www.businessinsider.in/tech/news/it-ministry-orders-vpn-providers-to-store-user-data-for-fiveyears-tech-news/articleshow/91334830.cms. Accessed 23 Jun 2023.

  49. Allison B, Guthrie D, Guthrie L. Another look at the data sparsity problem. InText, Speech and Dialogue: 9th International Conference, TSD 2006, Brno, Czech Republic, September 11-15, 2006. Proceedings 9. Springer. 2006;327–34.

  50. Zhang Y, Yang Q. An overview of multi-task learning. Natl Sci Rev. 2018;5(1):30–43.

    Article  Google Scholar 

  51. Laal M, Salamati P. Lifelong learning; why do we need it? Procedia Soc Behav Sci. 2012;31:399–403.

    Article  Google Scholar 

  52. Liu B, Liu Q, Stone P. Continual learning and private unlearning. arXiv preprint. http://arxiv.org/abs/2203.12817. 2022.

  53. Nguyen TT, Duong CT, Weidlich M, Yin H, Nguyen QVH. Retaining data from streams of social platforms with minimal regret, in Twenty-sixth International Joint Conference on Artificial Intelligence, no. CONF. 2017.

  54. Huang H, Ma X, Erfani SM, Bailey J, Wang Y. Unlearnable examples: making personal data unexploitable. arXiv preprint. http://arxiv.org/abs/2101.04898. 2021.

  55. Chundawat VS, Tarun AK, Mandal M, Kankanhalli M. Zeroshot machine unlearning. arXiv preprint. http://arxiv.org/abs/2201.05629. 2022.

  56. Guo C, Goldstein T, Hannun A, Van Der Maaten L. Certified data removal from machine learning models. arXiv preprint. http://arxiv.org/abs/1911.03030. 2019.

  57. Ginart A, Guan M, Valiant G, Zou JY. Making AI forget you: data deletion in machine learning. Adv Neural Inf Process Sys. 2019;32.

  58. Brophy J, Lowd D. Machine unlearning for random forests, in International Conference on Machine Learning. PMLR. 2021;1092–1104.

  59. Thudi A, Deza G, Chandrasekaran V, Papernot N, Unrolling sgd: understanding factors influencing machine unlearning, in,. IEEE 7th European Symposium on Security and Privacy (EuroS&P). IEEE. 2022;2022:303–19.

    Google Scholar 

  60. Neel S, Roth A, Sharifi-Malvajerdi S. Descent-to-delete: gradient-based methods for machine unlearning, in Algorithmic Learning Theory. PMLR. 2021;931–962.

  61. Graves L, Nagisetty V, Ganesh V. Amnesiac machine learning, in Proceedings of the AAAI Conference on Artificial Intelligence. 2021;35(13):11516–11524.

  62. Dwork C, Differential privacy: a survey of results, in International conference on theory and applications of models of computation. Springer. 2008;1–19.

  63. Cao Y, Yang J, Towards making systems forget with machine unlearning, in,. IEEE Symposium on Security and Privacy. IEEE. 2015;2015:463–80.

    Google Scholar 

  64. Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning. Adv Neural Inf Process Sys. 2000;13.

  65. Chen Y, Xiong J, Xu W, Zuo J. A novel online incremental and decremental learning algorithm based on variable support vector machine. Clust Comput. 2019;22(3):7435–45.

    Article  Google Scholar 

  66. Chundawat VS, Tarun AK, Mandal M, Kankanhalli M. Can bad teaching induce forgetting? Unlearning in deep networks using an incompetent teacher. arXiv preprint. http://arxiv.org/abs/2205.08096. 2022.

  67. Schelter S, Grafberger S, Dunning T, Hedgecut: maintaining randomised trees for low-latency machine unlearning, in Proceedings of the 2021 International Conference on Management of Data. 2021;1545–1557.

  68. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63(1):3–42.

    Article  Google Scholar 

  69. Golatkar A, Achille A, Soatto S. Forgetting outside the box: scrubbing deep networks of information accessible from input-output observations, in European Conference on Computer Vision. Springer. 2020; 383–398.

  70. Golatkar A, Achille A, Ravichandran A, Polito M, Soatto S. Mixed-privacy forgetting in deep networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021;792–801.

  71. Baumhauer T, Scho¨ttle P, Zeppelzauer M. Machine unlearning: linear filtration for logit-based classifiers. arXiv preprint. http://arxiv.org/abs/2002.02730. 2020.

  72. Koch K, Soll M. No matter how you slice it: machine unlearning with sisa comes at the expense of minority classes, in 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). IEEE. 2023;622–637.

  73. Mahmud MS, Huang JZ, Salloum S, Emara TZ. and K. Sadat- diynov, A survey of data partitioning and sampling methods to support big data analysis, Big Data Mining and Analytics. 2020;3(2):85–101.

    Google Scholar 

  74. Picard RR, Berk KN. Data splitting. The American Statisti- cian. 1990;44(2):140–7.

    Google Scholar 

  75. Feng SY, Gangal V, Wei J, Chandar S, Vosoughi S, Mitamura T, Hovy E. A survey of data augmentation approaches for nlp. arXiv preprint. http://arxiv.org/abs/2105.03075. 2021.

  76. Ul Hassan M, Rehmani MH, Rehan M, Chen J. Differential privacy in cognitive radio networks: a comprehensive survey. Cognitive Computation. 2022;1–36.

  77. Szo¨re´nyi B. Characterizing statistical query learning: simplified notions and proofs, in International Conference on Algorithmic Learning Theory. Springer. 2009;186–200.

  78. Yang K. New lower bounds for statistical query learning. J Comput Syst Sci. 2005;70(4):485–509.

    Article  MathSciNet  Google Scholar 

  79. Zhou Y, Huang K, Cheng C, Wang X, Hussain A, Liu X. Fastadabelief: improving convergence rate for belief-based adaptive optimizers by exploiting strong convexity. IEEE Transactions on Neural Networks and Learning Systems. 2022.

  80. Ralambondrainy H. A conceptual version of the k-means algorithm. Pattern Recogn Lett. 1995;16(11):1147–57.

    Article  Google Scholar 

  81. Karasuyama M, Takeuchi I. Multiple incremental decremental learning of support vector machines. IEEE Trans Neural Networks. 2010;21(7):1048–59.

    Article  Google Scholar 

  82. Joyce JM. Kullback-leibler divergence, in International encyclope- dia of statistical science. Springer. 2011;720–722.

  83. Clark LA, Pregibon D. Tree-based models, in Statistical models in S. Routledge. 2017;377–419.

  84. Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD. An introduction to decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society. 2004;18(6):275–85.

    Article  Google Scholar 

  85. Spinelli I, Scardapane S, Hussain A, Uncini A. Biased edge dropout for enhancing fairness in graph representation learning. arXiv preprint. http://arxiv.org/abs/2104.14210. 2021.

  86. Zhang Q, Zhong G, Dong J. A graph-based semi-supervised multi-label learning method based on label correlation consistency. Cogn Comput. 2021;13(6):1564–73.

    Article  Google Scholar 

  87. Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D, Fran- con O, Raju B, Shahrzad H, Navruzyan A, Duffy N, et al. Evolving deep neural networks, in Artificial intelligence in the age of neural networks and brain computing. Elsevier. 2019;293–312.

  88. Agostinelli F, Hoffman M, Sadowski P, Baldi P. Learning activation functions to improve deep neural networks. arXiv preprint. http://arxiv.org/abs/1412.6830. 2014.

  89. Chhikara P, Tekchandani R, Kumar N, Chamola V, Guizani M. Dcnn-ga: a deep neural net architecture for navigation of uav in indoor environment. IEEE Internet Things J. 2020;8(6):4448–60.

    Article  Google Scholar 

  90. Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of deep learning and reinforcement learning to biological data. IEEE transactions on neural networks and learning systems. 2018;29(6):2063–79.

    Article  MathSciNet  Google Scholar 

  91. Boyd SP, Vandenberghe L. Convex optimization. Cambridge university press. 2004.

  92. Gao B, Pavel L. On the properties of the softmax function with application in game theory and reinforcement learning. arXiv preprint. http://arxiv.org/abs/1704.00805. 2017.

  93. Freese F, et al. Testing accuracy. Forest Sci. 1960;6(2):139–45.

    Google Scholar 

  94. Hagenbach J, Koessler F. The Streisand effect: signaling and partial sophistication. J Econ Behav Organ. 2017;143:1–8.

    Article  Google Scholar 

  95. Swiler LP, Paez TL, Mayes RL. Epistemic uncertainty quantification tutorial, in Proceedings of the 27th International Modal Analysis Conference. 2009.

  96. Carlini N, Chien S, Nasr M, Song S, Terzis A, Trame`r F, Membership inference attacks from first principles, CoRR, vol. abs/2112.03570, 2021. [Online]. Available: https://arxiv.org/abs/2112.03570.

  97. Shokri R, Stronati M, Shmatikov V. Membership inference attacks against machine learning models, CoRR, vol. abs/1610.05820, 2016. [Online]. Available: http://arxiv.org/abs/1610.05820.

  98. Shuvo MSR, Alhadidi D. Membership inference attacks: analysis and mitigation, in 2020 IEEE 19th International Conference on Trust. Security and Privacy in Computing and Communications (TrustCom). 2020;1410–1419.

  99. Liu X, Xie L, Wang Y, Zou J, Xiong J, Ying Z, Vasilakos AV. Privacy and security issues in deep learning: a survey. IEEE Access. 2020;9:4566–93.

    Article  Google Scholar 

  100. Chundawat VS, Tarun AK, Mandal M, Kankanhalli M. Zeroshot machine unlearning. IEEE Transactions on Information Forensics and Security. 2023.

  101. Wang K, Fu Y, Li K, Khisti A, Zemel RS, Makhzani A. Variational model inversion attacks, CoRR, vol. abs/2201.10787, 2022. [Online]. Available: https://arxiv.org/abs/2201.10787.

  102. Fredrikson M. Jha S, Ristenpart T. Model inversion attacks that exploit confidence information and basic countermeasures, in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’15. New York, NY, USA: Association for Computing Machinery. 2015;1322–1333. [Online]. Available: https://doi.org/10.1145/2810103.2813677.

  103. Xian Y, Lampert CH, Schiele B, Akata Z. Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans Pattern Anal Mach Intell. 2018;41(9):2251–65.

    Article  Google Scholar 

  104. Golatkar A, Achille A, Soatto S. Eternal sunshine of the spotless net: Selective forgetting in deep networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020;9304–9312.

  105. Tarun AK, Chundawat VS, Mandal M, Kankanhalli M. Fast yet effective machine unlearning. arXiv preprint. http://arxiv.org/abs/2111.08947. 2021.

  106. Becker A, Liebig T. Evaluating machine unlearning via epistemic uncertainty. arXiv preprint. http://arxiv.org/abs/2208.10836. 2022.

  107. Wiedmann T, Minx J. A definition of ‘carbon footprint.’ Eco- logical economics research trends. 2008;1(2008):1–11.

    Google Scholar 

  108. Henderson P, Hu J, Romoff J, Brunskill E, Jurafsky D, Pineau J. Towards the systematic reporting of the energy and carbon footprints of machine learning. J Mach Learn Res. 2020;21(1):10039–10081.

  109. L. F. W. Anthony, B. Kanding, and R. Selvan, Carbontracker: tracking and predicting the carbon footprint of training deep learning models. arXiv preprint. http://arXiv:2007.03051. 2020.

  110. T. Alladi, B. Gera, A. Agrawal, V. Chamola, and F. R. Yu, Deepadv: a deep neural network framework for anomaly detection in vanets. IEEE Transactions on Vehicular Technology. 2021;70(11):12013–12023.

  111. Shokri R, Stronati M, Song C, Shmatikov V, Membership inference attacks against machine learning models, in,. IEEE symposium on security and privacy (SP). IEEE. 2017;2017:3–18.

    Google Scholar 

  112. Zhang C, Xie Y, Bai H, Yu B, Li W, Gao Y. A survey on federated learning. Knowl-Based Syst. 2021;216: 106775.

    Article  Google Scholar 

  113. Li L, Fan Y, Tse M, Lin K-Y. A review of applications in federated learning. Comput Ind Eng. 2020;149: 106854.

    Article  Google Scholar 

  114. Li T, Sahu AK, Talwalkar A, Smith V. Federated learning: challenges, methods, and future directions. IEEE Signal Process Mag. 2020;37(3):50–60.

    Article  Google Scholar 

  115. Aspin DN, Chapman JD. Lifelong learning: concepts and conceptions. Int J Lifelong Educ. 2000;19(1):2–19.

    Article  Google Scholar 

  116. Thrun S. Lifelong learning algorithms Learning to learn. 1998;8:181–209.

    Google Scholar 

  117. L.a. is suing ibm for illegally gathering and selling user data through its weather channel app - Los Angeles Times. https://www.latimes.com/business/technology/la-fi-tn-city-attorney-weather-app-20190104-story.html. Accessed 27 Jun 2023.

  118. Yapo A, Weiss J. Ethical implications of bias in machine learning, 2018.

  119. Roscher R, Bohn B, Duarte MF, Garcke J. Explainable machine learning for scientific insights and discoveries. Ieee Access. 2020;8:42200–42216.

  120. Belle V, Papantonis I. Principles and practice of explainable machine learning. Frontiers in big Data. 2021;39.

  121. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions, in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017;4765–4774. [Online]. Available: http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf.

  122. Ribeiro MT, Singh S, Guestrin C. Why should I trust you?: explaining the predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August. 2016;1135–1144.

  123. Strubell E, Ganesh A, McCallum A. Energy and policy considerations for deep learning in nlp. arXiv preprint. http://arxiv.org/abs/1906.02243. 2019.

  124. Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun ACM. 2020;63(12):54–63.

    Article  Google Scholar 

  125. Patterson D, Gonzalez J, Le Q, Liang C, Munguia L-M, Rothchild D, So D, Texier M, Dean J. Carbon emissions and large neural network training. arXiv preprint. http://arxiv.org/abs/2104.10350, 2021.

  126. Adiwardana D, Luong M-T, So DR, Hall J, Fiedel N, Thop- pilan R, Yang Z, Kulshreshtha A, Nemade G, Lu Y, et al. Towards a human-like open-domain chatbot. arXiv preprint. http://arxiv.org/abs/2001.09977. 2020.

  127. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, et al. Language models are few-shot learners. Adv Neural Inf Process Syst. 2020;33:1877–901.

    Google Scholar 

  128. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res. 2020;21(140):1–67.

    MathSciNet  Google Scholar 

  129. Fedus W, Zoph B, Shazeer N. Switch transformers: scaling to trillion parameter models with simple and efficient sparsity. 2021.

  130. Lepikhin D, Lee H, Xu Y, Chen D, Firat O, Huang Y, Krikun M, Shazeer N, Chen Z. Gshard: Scaling giant models with conditional computation and automatic sharding. arXiv preprint. http://arxiv.org/abs/2006.16668. 2020.

  131. Apte C, The role of machine learning in business optimization, in Proceedings of the 27th International Conference on Machine Learning (ICML-10). Citeseer. 2010;1–2.

  132. Singh S, Sulthana R, Shewale T, Chamola V, Benslimane A, Sikdar B. Machine-learning-assisted security and privacy provisioning for edge computing: a survey. IEEE Internet Things J. 2021;9(1):236–60.

    Article  Google Scholar 

  133. Miao Y, Chen C, Pan L, Han Q-L, Zhang J, Xiang Y. Machine learning–based cyber attacks targeting on controlled information: a survey. ACM Computing Surveys (CSUR). 2021;54(7):1–36.

    Article  Google Scholar 

  134. Wazid M, Das AK, Chamola V, Park Y. Uniting cyber security and machine learning: advantages, challenges and future research. ICT Express. 2022;8(3):313–21.

    Article  Google Scholar 

  135. Chamola V, Goyal A, Sharma P, Hassija V, Binh HTT, Saxena V. Artificial intelligence-assisted blockchain-based framework for smart and secure emr management. Neural Computing and Appli- cations. 2022;1–11.

  136. Isinkaye FO, Folajimi YO, Ojokoh BA. Recommendation systems: principles, methods and evaluation. Egypt Inform J. 2015;16(3):261–73.

  137. Pavithra D. Jayanthi A. A study on machine learning algorithm in medical diagnosis. Int J Adv Res Comput Sci. 2018;9(4).

  138. Rohmetra H, Raghunath N, Narang P, Chamola V, Guizani M, Lakkaniga NR. AI-enabled remote monitoring of vital signs for covid-19: methods, prospects and challenges. Computing. 2021;1–27.

  139. Bansal G, Chamola V, Narang P, Kumar S, Raman S. Deep3dscan: deep residual network and morphological descriptor based framework forlung cancer classification and 3d segmentation. IET Image Proc. 2020;14(7):1240–7.

    Article  Google Scholar 

  140. Delgado-Rodriguez M, Llorca Bias J. Journal of Epidemiology & Community Health. 2004;58(8):635–641.

  141. Danks D, London AJ. Algorithmic bias in autonomous systems. Ijcai. 2017;17(2017):4691–7.

    Google Scholar 

  142. Malerba D, Esposito F, Lanza A, Lisi FA. Machine learning for information extraction from topographic maps. Geographic data mining and knowledge discovery. 2001;291–314.

  143. Hutchins WJ, Machine translation: past, present, future. Ellis Horwood Chichester. 1986.

  144. Grieco LA, Rizzo A, Colucci S, Sicari S, Piro G, Di Paola D, Boggia G. IoT-aided robotics applications: technological implications, target domains and open issues. Comput Commun. 2014;54:32–47.

    Article  Google Scholar 

  145. Roy Chowdhury A, Iot and robotics: a synergy. PeerJ Preprints. 2017;5:e2760v1.

  146. Zhao W, Chellappa R, Phillips PJ, Rosenfeld A. Face recognition: a literature survey. ACM computing surveys (CSUR). 2003;35(4):399–458.

    Article  Google Scholar 

  147. Hernandez G, Arias O, Buentello D, Jin Y, Smart nest thermostat: a smart spy in your home. Black Hat USA. no. 2015, 2014.

  148. Gogate M, Dashtipour K, Hussain A, Towards robust real-time audio-visual speech enhancement. arXiv preprint. http://arxiv.org/abs/2112.09060. 2021.

  149. Gogate M, Dashtipour K, Adeel A, Hussain A. Cochleanet: a robust language-independent audio-visual model for real-time speech enhancement. Information Fusion. 2020;63:273–85.

    Article  Google Scholar 

  150. Hussain T, M. Gogate, K. Dashtipour, and A. Hussain, Towards intelligibility-oriented audio-visual speech enhancement. arXiv preprint. http://arxiv.org/abs/2111.09642. 2021.

  151. Adeel A, Gogate M, Hussain A. Contextual deep learning- based audio-visual switching for speech enhancement in real-world environments. Information Fusion. 2020;59:163–70.

    Article  Google Scholar 

  152. Alladi T, Kohli V, Chamola V, Yu FR, Securing the internet of vehicles: a deep learning based classification framework. IEEE Networking Letters. 2021.

  153. Wang W, Zheng VW, Yu H, Miao C. A survey of zero-shot learning: settings, methods, and applications. ACM Transactions on Intelligent Systems and Technology (TIST). 2019;10(2):1–37.

    Google Scholar 

  154. Wang Y, Yao Q, Kwok JT, Ni LM. Generalizing from a few examples: a survey on few-shot learning. ACM computing surveys (csur). 2020;53(3):1–34.

    Article  Google Scholar 

  155. Rahman S, Khan S, Porikli F. A unified approach for conventional zero-shot, generalized zero-shot, and few-shot learning. IEEE Trans Image Process. 2018;27(11):5652–67.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work has been supported by Engineering and Physical Sciences Research Council (EPSRC) Grants Ref. EP/M026981/1, EP/T021063/1, EP/T024917/1 and ENU Development Trust Ref. LH Oct19’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Chamola.

Ethics declarations

Ethical Approval

This article contains no studies with human participants or animals performed by authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sai, S., Mittal, U., Chamola, V. et al. Machine Un-learning: An Overview of Techniques, Applications, and Future Directions. Cogn Comput 16, 482–506 (2024). https://doi.org/10.1007/s12559-023-10219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-023-10219-3

Keywords

Navigation