Skip to main content
Log in

Neural Adaptive Dynamic Event-Triggered Containment Control for Uncertain Multi-Agent Systems Under Markovian Switching Dynamics

  • Research
  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

In this paper, we propose the containment control problem for multi-agent systems with Markovian switching dynamics by proposing a novel adaptive dynamic event-triggered sliding mode control scheme based on radial basis function neural networks. First, the unknown nonlinear dynamics of the system were approximated by using radial basis function neural networks. The dynamic event-triggered control scheme designed in the framework of sliding mode control operated at specific event sampling moments, thereby reducing computational and communication burdens. The containment control was achieved through a synergistic approach integrating dynamic event-triggered control with neural network-based adaptive control in a stochastic switching system. Moreover, we proved that Zeno behavior was effectively avoided. The proposed distributed containment control technique was validated through simulations, demonstrating its effectiveness and superiority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Gu N, Peng Z, Wang D, Zhang F. Path-guided containment maneuvering of mobile robots: theory and experiments. IEEE Trans Ind Electron. 2020;68(8):7178–87.

    Article  MATH  Google Scholar 

  2. Fan H, Chen X, Shi K, Liang Y, Wang Y, Wen H. Mittag-Leffler synchronization in finite time for uncertain fractional-order multi-delayed memristive neural networks with time-varying perturbations via information feedback. Fractal Fractional. 2024;8(7):422.

    Article  MATH  Google Scholar 

  3. Cai J, Yi C, Guo R. Synchronization of a class of nonlinear multiple neural networks with delays via a dynamic event-triggered impulsive control strategy. Electron Res Arch. 2024;32(7):4581–603.

    Article  MathSciNet  MATH  Google Scholar 

  4. Meng X, Fei Y, Li Z. Quasi-projective synchronization control of delayed stochastic quaternion-valued fuzzy cellular neural networks with mismatched parameters. Cogn Comput. 2024;16(5):2206–21.

    Article  MATH  Google Scholar 

  5. Fan H, Rao Y, Shi K, Wen H. Time-varying function matrix projection synchronization of Caputo fraction-order uncertain memristive neural networks with multiple delays via mixed open loop feedback control and impulsive control. Fractal Fractional. 2024;8(5):301.

    Article  MATH  Google Scholar 

  6. Wen G, Chen CP, Li B. Optimized formation control using simplified reinforcement learning for a class of multiagent systems with unknown dynamics. IEEE Trans Ind Electron. 2019;67(9):7879–88.

    Article  MATH  Google Scholar 

  7. Song Y, Lim S, Myung H, Lee H, Jeong J, Lim H, Oh H. Distributed swarm system with hybrid-flocking control for small fixed-wing UAVs: algorithms and flight experiments. Expert Syst Appl. 2023;229:120457: 1–120457: 15.

  8. Ma Y, Che W, Deng C, Wu Z-G. Observer-based event-triggered containment control for mass under DoS attacks. IEEE Trans Cybern. 2022;52(12):13156–67.

    Article  MATH  Google Scholar 

  9. Wu Y, Ma H, Chen M, Li H. Observer-based fixed-time adaptive fuzzy bipartite containment control for multiagent systems with unknown hysteresis. IEEE Trans Fuzzy Syst. 2021;30(5):1302–12.

    Article  MATH  Google Scholar 

  10. Liu P, Hao Y, Wang Q. Distributed formation-containment control of networked mobile robots using the Udwadia-Kalaba approach. IEEE Trans Netw Sci Eng. 2024;11(1):848–57.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ji M, Ferrari-Trecate G, Egerstedt M, Buffa A. Containment control in mobile networks. IEEE Trans Autom Control. 2008;53(8):1972–5.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong X, Hua Y, Zhou Y, Ren Z, Zhong Y. Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems. IEEE Trans Autom Sci Eng. 2018;16(1):229–40.

    Article  MATH  Google Scholar 

  13. Qin H, Chen H, Sun Y, Wu Z. The distributed adaptive finite-time chattering reduction containment control for multiple ocean bottom flying nodes. Int J Fuzzy Syst. 2019;21(2):607–19.

    Article  MathSciNet  MATH  Google Scholar 

  14. Yao D, Dou C, Xie X, Hu S. Containment control of non-affine multi-agent systems based on given precision. Appl Math Comput. 2022;412:126579.

    MathSciNet  MATH  Google Scholar 

  15. Cui Y, Liu X, Deng X, Wang L. Adaptive containment control for nonlinear strict-feedback multi-agent systems with dynamic leaders. Int J Control. 2022;95(6):1658–67.

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu Y, Lu R, Peng H, Xie K, Xue A. Asynchronous dissipative state estimation for stochastic complex networks with quantized jumping coupling and uncertain measurements. IEEE Trans Neural Netw Learn Syst. 2015;28(2):268–77.

    Article  MathSciNet  MATH  Google Scholar 

  17. Tang Z-L, Ge SS, Tee KP, He W. Robust adaptive neural tracking control for a class of perturbed uncertain nonlinear systems with state constraints. IEEE Trans Syst Man Cybern Syst. 2016;46(12):1618–29.

    Article  MATH  Google Scholar 

  18. Fan Y, Tan U-X. Design of a feedforward-feedback controller for a piezoelectric-driven mechanism to achieve high-frequency nonperiodic motion tracking. IEEE/ASME Trans Mechatron. 2019;24(2):853–62.

    Article  MATH  Google Scholar 

  19. Tong D, Xu C, Chen Q, Zhou W, Xu Y. Sliding mode control for nonlinear stochastic systems with Markovian jumping parameters and mode-dependent time-varying delays. Nonlinear Dyn. 2020;100(2):1343–58.

    Article  MATH  Google Scholar 

  20. Tian J, Li M, Chen F, Feng N. Learning subspace-based RBFNN using coevolutionary algorithm for complex classification tasks. IEEE Trans Neural Netw Learn Syst. 2015;27(1):47–61.

    Article  MathSciNet  MATH  Google Scholar 

  21. Raitoharju J, Kiranyaz S, Gabbouj M. Training radial basis function neural networks for classification via class-specific clustering. IEEE Trans Neural Netw Learn Syst. 2015;27(12):2458–71.

    Article  MATH  Google Scholar 

  22. Yin Y, Shi P, Liu F, Teo KL. Filtering for discrete-time nonhomogeneous Markov jump systems with uncertainties. Inf Sci. 2014;259:118–27.

    Article  MathSciNet  MATH  Google Scholar 

  23. Kchaou M, Alshammari O, Jerbi H, Abassi R, Ben Aoun S. An adaptive event-triggered filtering for fuzzy Markov switching systems with quantization and deception attacks: A non-stationary approach. Int J Fuzzy Syst Early Access. 2024;.

  24. Wu L, Shi P, Gao H. State estimation and sliding-mode control of Markovian jump singular systems. IEEE Trans Autom Control. 2010;55(5):1213–9.

    Article  MathSciNet  MATH  Google Scholar 

  25. Ge X, Han Q-L, Zhang X-M, Ding L, Yang F. Distributed event-triggered estimation over sensor networks: a survey. IEEE Trans Cybern. 2019;50(3):1306–20.

    Article  MATH  Google Scholar 

  26. Ge X, Han Q-L, Ding D, Zhang X-M, Ning B. A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems. Neurocomputing. 2018;275:1684–701.

    Article  MATH  Google Scholar 

  27. Hu J, Jia C, Yu H, Liu H. Dynamic event-triggered state estimation for nonlinear coupled output complex networks subject to innovation constraints. IEEE/CAA J Autom Sin. 2022;9(5):941–4.

    Article  MATH  Google Scholar 

  28. Bu X, Xiao Y, Lei H. An adaptive critic design-based fuzzy neural controller for hypersonic vehicles: predefined behavioral nonaffine control. IEEE/ASME Trans Mechatron. 2019;24(4):1871–81.

    Article  MATH  Google Scholar 

  29. Zheng Y, Li Y-X, Che W-W, Hou Z. Adaptive NN-based event-triggered containment control for unknown nonlinear networked systems. IEEE Trans Neural Netw Learn Syst. 2023;34(6):2742–52.

    Article  MathSciNet  MATH  Google Scholar 

  30. Jin Y, Qi W, Zong G. Finite-time synchronization of delayed semi-Markov neural networks with dynamic event-triggered scheme. Int J Control Autom Syst. 2021;19(6):2297–308.

    Article  MATH  Google Scholar 

  31. Yang Y, Qian Y. Event-trigger-based recursive sliding-mode dynamic surface containment control with nonlinear gains for nonlinear multi-agent systems. Inf Sci. 2021;560:202–16.

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhao Y, Tang F, Zong G, Zhao X, Xu N. Event-based adaptive containment control for nonlinear multi-agent systems with periodic disturbances. IEEE Trans Circ Syst II: Express Briefs. 2022;69(12):5049–53.

  33. Zhu Z, Wang F, Yin Y, Liu Z, Chen Z. Distributed fault-tolerant containment control for a class of non-linear multi-agent systems via event-triggered mechanism. Appl Math Comput. 2022;430:127250: 1-127250: 13.

  34. Lin Z. Global control of linear systems with saturating actuators. Automatica. 1998;34(7):897–905.

    Article  MathSciNet  MATH  Google Scholar 

  35. Ren W, Beard RW. Distributed consensus in multi-vehicle cooperative control. Springer; 2008. vol. 27, no. 2.

  36. Rockafellar RT. Convex analysis. Princeton university press; 1970, vol. 18.

  37. Berman A, Plemmons RJ. Nonnegative matrices in the mathematical sciences. SIAM; 1994.

  38. Mei J, Ren W, Ma G. Distributed containment control for Lagrangian networks with parametric uncertainties under a directed graph. Automatica. 2012;48(4):653–9.

    Article  MathSciNet  MATH  Google Scholar 

  39. Hagood JW, Thomson BS. Recovering a function from a Dini derivative. Am Math Mon. 2006;113(1):34–46.

    Article  MathSciNet  MATH  Google Scholar 

  40. Luo Y, Huang W, Cao J, Xia W, Wang T. Fixed-time formation control of second-order nonlinear multi-agent systems using the neural network dynamic sliding mode. Int J Robust Nonlinear Control. 2024;34(14):9279–97.

    Article  MathSciNet  MATH  Google Scholar 

  41. He W, Mo Z. Secure event-triggered consensus control of linear multiagent systems subject to sequential scaling attacks. IEEE Trans Cybern. 2022;52(10):10314–27.

    Article  MATH  Google Scholar 

  42. He H, Gao X, Qi W. Distributed event-triggered sliding mode control of switched systems. J Frankl Inst-Eng Math. 2019;356(17):10296–314.

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang L, Hu J, Fu M. Distributed containment control of the underactuated vessels with collision/obstacle avoidance and connectivity maintenance. Ocean Eng. 2024;298:117194: 1-117194: 15.

    Article  MATH  Google Scholar 

  44. Tan Y, Liu J, Xie X, Tian E, Liu J. Dynamic-memory event-triggered sliding-mode secure control for nonlinear semi-Markov jump systems with stochastic cyber attacks. IEEE Trans Autom Sci Eng, Early Access. 2024.

  45. Cai J, Yi C, Wu Y, Liu D, Zhong D. Leader-following consensus of nonlinear singular switched multi-agent systems via sliding mode control. Asian J Control. 2024;26(4):1997–2010.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research is supported by the 2022 Guizhou University of Finance and Economics project of introducing talents and the start of scientific research under Grant 2022YJ032; in part by the Basic Research Program (Natural Sciences) Youth Mentoring Project of Guizhou Province under Grant Qian Ke He Ji Chu-[2024] Youth 186; in part by the High-Level Talent Initiation Project of Shenzhen Polytechnic University under Grant 6024330003K; in part by the Research Projects of Department of Education of Guangdong Province under Grant 2024KQNC034; and in part by the project of Young Scientific and Technical Talents Development of Education Department of Guizhou Province under Grant [2024]80.

Author information

Authors and Affiliations

Authors

Contributions

Jiayi Cai and Wenjun Wu wrote the original draft. Chengbo Yi prepared all figures. Yanxian Chen reviewed and edited.

Corresponding author

Correspondence to Chengbo Yi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Wu, W., Yi, C. et al. Neural Adaptive Dynamic Event-Triggered Containment Control for Uncertain Multi-Agent Systems Under Markovian Switching Dynamics. Cogn Comput 17, 33 (2025). https://doi.org/10.1007/s12559-024-10388-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12559-024-10388-9

Keywords