Abstract
Most of the complex network in the real world are not single-layer networks, and networks will be connected with each other. Networks with multi-layer is important because it means cognitive and artificial intelligence. Most current studies of networks consider the case that with n-nodes including ring network, small-word network, scale-free network, etc. This type of network is not enough to describe the complex structure of actual neural networks. However, it is more actual to study the dynamic behavior of multi-layer networks than single-layer networks. In this paper, the stability and bifurcation of a class of three-layer fractional-order neural networks with multiple delays was studied for the first time. By selecting the appropriate bifurcation parameter, the internal dynamic behavior of the given model was discussed by using the theory of Hopf bifurcation, and the critical value and criterion for Hopf bifurcation are derived. The influence of delay, fractional order, and the number of hidden neurons on the bifurcation point were discussed in detail. And the critical value of Hopf bifurcation is accurately calculated. The results show that the stability of the system can be destroyed by increasing the fractional order and the number of hidden neurons. The correctness of the theoretical results is verified by numerical simulation.












Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data Availability
The data that support the findings of this study are available from the corresponding author, [author initials], upon reasonable request.
References
Zhang L, Wang F, Sun T, Xu B. A constrained optimization method based on BP neural network. Neural Comput Appl. 2016;29:413–21.
Wang X, Li C, Huang T, Duan S. A weakly connected memristive neural network for associative memory. Neural Process Lett. 2013;40:275–88.
Xia Y, Wang J. A general projection neural network for solving monotone variational inequalities and related optimization problems. IEEE Trans Neural Netw. 2004;15:318–28.
Zhang J, Shao K, Luo X. Small sample image recognition using improved convolutional neural network. J Vis Commun Image R. 2018;55:640–7.
Liu J, Gong M, He H. Deep associative neural network for associative memory based on unsupervised representation learning. Neural Netw. 2019;113:41–53.
Tang Z, Ju H, Feng J. Novel approaches to pin cluster synchronization on complex dynamical networks in Lur’e forms. Commun Nonlinear Sci Numer Simul. 2018;57:422–38.
Shen H, Park J. Finite-time synchronization control for uncertain Markov jump neural networks with input constraints. Nonlinear Dyn. 2014;77:1709–20.
Dong T, Bai J, Yang L. Bifurcation analysis of delayed complex-valued neural network with diffusions. Neural Process Lett. 2018;8:1–15.
Kundu A, Das P. Stability, bifurcations and synchronization in a delayed neural network model of n-identical neurons. Math Comput Simul. 2016;121:12–33.
Zhang Y, Xiao M, Zheng W, Cao J. Large-scale neural networks with asymmetrical three-ring structure: stability, nonlinear oscillations, and Hopf Bifurcation. IEEE Trans Cybern. 2022;52:9893–904.
Mao X. Bifurcations and synchronization of delay-coupled neuronal networks with autaptic connections. Int J Bifurcat Chaos. 2018;28:1850071.
Guo Q, Dai C, Yu H, Liu H, Sun X. Stability and bifurcation analysis of a nutrient-phytoplankton model with time delay. Math Methods Appl Sci. 2019;43:3018–303.
Wang X, Wang Z, Huang X. Dynamic analysis of a fractional-order delayed SIR model with saturated incidence and treatment functions. Int J Bifurcat Chaos. 2018;28:1850180.
Wang Z, Huang X, Zhou J. A numerical method for delayed fractional-order differential equations: Based on g-l defifinition. Appl Math Inform Sci. 2013;7:525–9.
Sohail A, Beg O, Li Z, Celik S. Physics of fractional imaging in biomedicine. Prog Biophys Mol Biol. 2018;140:13–20.
Zhang Y, Yu X, Sun H, Tick G, Wei W. Applicability of time fractional derivative models for simulating the dynamics and mitigation scenarios of COVID-19. Chaos Solit Fract. 2020;138: 109959.
Chen L, Yin H, Huang T, Yuan L, Zheng S. Chaos in fractional-order discrete neural networks with application to image encryption. Neural Netw. 2020;125:174–84.
Xu C, Liao M, Li P, Yuan S. Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks. Chaos Solit Fract. 2021;142: 110535.
Zhang X, Niu P, Liu N, Li G. Global synchronization in finite-time of fractional-order complexvalued delayed Hopfield neural networks. Int J Control Autom Syst. 2019;17:521–35.
Huang C, Li Z, Ding D, Cao J. Bifurcation analysis in a delayed fractional neural network involving self-connection. Neurocomputing. 2018;314:186–97.
Huang C, Meng Y, Cao J. New bifurcation results for fractional BAM neural network with leakage delay. Chaos Solit Fract. 2017;100:31–44.
Huang C, Nie X, Zhao Z, Song Q. Novel bifurcation results for a delayed fractional-order quaternion-valued neural network. Neural Netw. 2019;117:67–93.
Chen J, Li C, Yang X. Asymptotic stability of delayed fractional-order fuzzy neural networks with impulse effects. J Frankl Inst. 2018;355:7595–608.
Huang C, Tang J, Niu Y, Cao J. Enhanced bifurcation results for a delayed fractional neural network with heterogeneous orders. Physica A. 2019;526: 121014.
Zhang H, Ye M, Ye R, Cao J. Synchronization stability of Riemann-Liouville fractional delay-coupled complex neural networks. Physica A. 2018;508:155–65.
Fan Y, Huang X, Wang Z, Li Y. Improved quasi-synchronization criteria for delayed fractional-order memristor-based neural networks via linear feedback control. Neurocomputing. 2018;306:68–79.
Hanif H. A computational approach for boundary layer flow and heat transfer of fractional Maxwell fluid. Math Comput Simul. 2022;191:1–13.
Liu F, Dong T, Wang H. Stability analysis and bifurcation control of a delayed incommensurate fractional-order gene regulatory network. Int J Bifurcat Chaos. 2020;30:2050089.
Xu C, Liu Z, Liao M, Li P. Fractional-order bidirectional associate memory neural networks with multiple delays: The case of Hopf bifurcation. Math Comput Simul. 2021;182:471–94.
Huang C, Liu H, Shi X, Chen X, Xiao M. Bifurcations in a fractional-order neural network with multiple leakage delays. Neural Netw. 2020;131:115–26.
Ding D, Yao X, Zhang H. Complex projection synchronization of fractional-order complex-valued memristive neural networks with multiple delays. Neural Process Lett. 2020;51:325–45.
Huang C, Zhao X, Wang X, Wang Z. Disparate delays-induced bifurcations in a fractional-order neural network. J Frankl Inst. 2019;356:2825–46.
Huang C, Cao J, Xiao M. Effects of time delays on stability and Hopf bifurcation in a fractional ring-structured network with arbitrary neurons. Commun Nonlinear Sci Numer Simulat. 2018;57:1–13.
Huang C, Wang J, Chen X, Cao J. Bifurcations in a fractional-order BAM neural network with four different delays. Neural Netw. 2021;141:344–54.
Cao J, Chong K. Generalized dissipativity state estimation for genetic regulatory networks with interval time-delay signals and leakage delays. Commun Nonlinear Sci Numer Simulat. 2020;89: 105326.
Cheng Z, Li D, Cao J. Stability and Hopf bifurcation of a three-layer neural network model with delays. Neurocomputing. 2016;175:355–70.
Funding
This work was supported by National Natural Science Foundation of China (Grant Nos. 61374011, 62103215, 62103217), Mathematical Tianyuan Fund of National Natural Science Foundation of China (Grant No.12126345), and Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2020MF080, ZR2020MF065, ZR202102270426).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethical Approval
This article does not contain any experiments with human or animal participants performed by any of the authors.
Informed Consent
Informed consent was obtained from all individual participants included in the study.
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A
\(n_{1}=7k\),
\(n_{2}=-c_{13}c_{31}-c_{14}c_{41}-c_{23}c_{32}-c_{15}c_{51}-c_{24}c_{42}-c_{25}c_{52}-c_{36}c_{63}-c_{37}c_{73}-c_{46}c_{64}- c_{47}c_{74}-c_{56}c_{65}-c_{57}c_{75}\),
\(n_{3}=21k^{2}\),
\(n_{4}=5k(-c_{13}c_{31}-c_{14}c_{41}-c_{23}c_{32}-c_{15}c_{51}-c_{24}c_{42}-c_{25}c_{52}-c_{36}c_{63}-c_{37}c_{73}-c_{46}c_{64}- c_{47}c_{74}-c_{56}c_{65}-c_{57}c_{75})\),
\(n_{5}=35k^{3}\), \(n_{6}=c_{13}c_{24}c_{31}c_{42}-c_{13}c_{24}c_{32}c_{41}-c_{14}c_{23}c_{31}c_{42}+c_{14}c_{23}c_{32}c_{41}+c_{13}c_{25}c_{31}c_{52} -c_{13}c_{25}c_{32}c_{51}-c_{15}c_{23}c_{31}c_{52}+c_{15}c_{23}c_{32}c_{51}+c_{14}c_{25}c_{41}c_{52}-c_{14}c_{25}c_{42}c_{51}- c_{15}c_{24}c_{41}c_{52} + c_{15}c_{24}c_{42}c_{51} +c_{13}c_{31}c_{46}c_{64}-c_{13}c_{36}c_{41}c_{64}-c_{14}c_{31}c_{46}c_{63}+c_{14}c_{36}c_{41}c_{63}+c_{13}c_{31}c_{47}c_{74}+c_{13}c_{31}c_{56}c_{65}-c_{13}c_{36}c_{51}c_{65 }-c_{13}c_{37}c_{41}c_{74}-c_{14}c_{31}c_{47}c_{73}+c_{14}c_{37}c_{41}c_{73}-c_{15}c_{31}c_{56}c_{63}+c_{15}c_{36}c_{51}c_{63}+c_{23}c_{32}c_{46}c_{64} -c_{23}c_{36}c_{42}c_{64}-c_{24}c_{32}c_{46}c_{63}+c_{24}c_{36}c_{42}c_{63}+c_{13}c_{31}c_{57}c_{75}-c_{13}c_{37}c_{51}c_{75}+ c_{14}c_{41}c_{56}c_{65}-c_{14}c_{46}c_{51}c_{65}-c_{15}c_{31}c_{57}c_{73}+ c_{15}c_{37}c_{51}c_{73} -c_{15}c_{41}c_{56}c_{64}+ c_{15}c_{46}c_{51}c_{64}+c_{23}c_{32}c_{47}c_{74}+c_{23}c_{32}c_{56}c_{65}-c_{23}c_{36}c_{52}c_{65}-c_{23}c_{37}c_{42}c_{74}- c_{24}c_{32}c_{47}c_{73}+c_{24}c_{37}c_{42}c_{73}-c_{25}c_{32}c_{56}c_{63}+c_{25}c_{36}c_{52}c_{63}+c_{14}c_{41}c_{57}c_{75}- c_{14}c_{47}c_{51}c_{75}-c_{15}c_{41}c_{57}c_{74}+c_{15}c_{47}c_{51}c_{74}+c_{23}c_{32}c_{57}c_{75}-c_{23}c_{37}c_{52}c_{75}+ c_{24}c_{42}c_{56}c_{65}-c_{24}c_{46}c_{52}c_{65}-c_{25}c_{32}c_{57}c_{73}+c_{25}c_{37}c_{52}c_{73}-c_{25}c_{42}c_{56}c_{64}+ c_{25}c_{46}c_{52}c_{64}+c_{24}c_{42}c_{57}c_{75}-c_{24}c_{47}c_{52}c_{75}-c_{25}c_{42}c_{57}c_{74}+c_{25}c_{47}c_{52}c_{74} + c_{36}c_{47}c_{63}c_{74}-c_{36}c_{47}c_{64}c_{73}-c_{37}c_{46}c_{63} + c_{37}c_{46}c_{64}c_{73} + c_{36}c_{57}c_{63}c_{75}-c_{36}c_{57}c_{65}c_{73}-c_{37}c_{56}c_{63}c_{75}+c_{37}c_{56}c_{65}c_{73}+c_{46}c_{57}c_{64}c_{75}- c_{46}c_{57}c_{65}c_{74}- c_{47}c_{56}c_{64}c_{75} +c_{47}c_{56}c_{65}c_{74}\),
\(n_{7}=-10k^{2}(c_{13}c_{31}+c_{14}c_{41}+c_{23}c_{32}+c_{15}c_{51}+c_{24}c_{42}+c_{25}c_{52}+c_{36}c_{63}+c_{37}c_{73}+c_{47}c_{74}+c_{56}c_{65}+c_{57}c_{75})\),
\(n_{8}=35k^{4}\), \(n_{9}=3k(c_{13}c_{24}c_{31}c_{42}-c_{13}c_{24}c_{32}c_{41}-c_{14}c_{23}c_{31}c_{42}+c_{14}c_{23}c_{32}c_{41}+c_{13}c_{25}c_{31}c_{52} -c_{13}c_{25}c_{32}c_{51}-c_{15}c_{23}c_{31}c_{52}+c_{15}c_{23}c_{32}c_{51}+c_{14}c_{25}c_{41}c_{52}-c_{14}c_{25}c_{42}c_{51}- c_{15}c_{24}c_{41}c_{52} + c_{15}c_{24}c_{42}c_{51}+c_{13}c_{31}c_{46}c_{64}-c_{13}c_{36}c_{41}c_{64}-c_{14}c_{31}c_{46}c_{63}+c_{14}c_{36}c_{41}c_{63}+c_{13}c_{31}c_{47}c_{74}+c_{13}c_{31}c_{56}c_{65}-c_{13}c_{36}c_{51}c_{65 }-c_{13}c_{37}c_{41}c_{74}-c_{14}c_{31}c_{47}c_{73}+c_{14}c_{37}c_{41}c_{73}-c_{15}c_{31}c_{56}c_{63}+c_{15}c_{36}c_{51}c_{63}+c_{23}c_{32}c_{46}c_{64} -c_{23}c_{36}c_{42}c_{64}-c_{24}c_{32}c_{46}c_{63}+c_{24}c_{36}c_{42}c_{63}+c_{13}c_{31}c_{57}c_{75}-c_{13}c_{37}c_{51}c_{75}+ c_{14}c_{41}c_{56}c_{65}-c_{14}c_{46}c_{51}c_{65}-c_{15}c_{31}c_{57}c_{73}+ c_{15}c_{37}c_{51}c_{73} -c_{15}c_{41}c_{56}c_{64}+ c_{15}c_{46}c_{51}c_{64}+c_{23}c_{32}c_{47}c_{74}+c_{23}c_{32}c_{56}c_{65}-c_{23}c_{36}c_{52}c_{65}-c_{23}c_{37}c_{42}c_{74}- c_{24}c_{32}c_{47}c_{73}+c_{24}c_{37}c_{42}c_{73}-c_{25}c_{32}c_{56}c_{63}+c_{25}c_{36}c_{52}c_{63}+c_{14}c_{41}c_{57}c_{75}- c_{14}c_{47}c_{51}c_{75}-c_{15}c_{41}c_{57}c_{74}+c_{15}c_{47}c_{51}c_{74}+c_{23}c_{32}c_{57}c_{75}-c_{23}c_{37}c_{52}c_{75}+ c_{24}c_{42}c_{56}c_{65}-c_{24}c_{46}c_{52}c_{65}-c_{25}c_{32}c_{57}c_{73}+c_{25}c_{37}c_{52}c_{73}-c_{25}c_{42}c_{56}c_{64}+ c_{25}c_{46}c_{52}c_{64}+c_{24}c_{42}c_{57}c_{75}-c_{24}c_{47}c_{52}c_{75}-c_{25}c_{42}c_{57}c_{74}+c_{25}c_{47}c_{52}*c_{74} + c_{36}c_{47}c_{63}c_{74}-c_{36}c_{47}c_{64}c_{73}-c_{37}c_{46}c_{63} + c_{37}c_{46}c_{64}c_{73} + c_{36}c_{57}c_{63}c_{75}-c_{36}c_{57}c_{65}c_{73}-c_{37}c_{56}c_{63}c_{75}+c_{37}c_{56}c_{65}c_{73}+c_{46}c_{57}c_{64}c_{75}- c_{46}c_{57}c_{65}c_{74}- c_{47}c_{56}c_{64}c_{75} +c_{47}c_{56}c_{65}c_{74})\),
\(n_{10}=-10k^{3}(c_{13}c_{31}+c_{14}c_{41}+c_{23}c_{32}+c_{15}c_{51}+c_{24}c_{42}+c_{25}c_{52}+c_{36}c_{63}+c_{37}c_{73}+c_{47}c_{74}+c_{56}c_{65}+c_{57}c_{75}+c_{46}c_{64})\),
\(n_{11}=21k^{5}\), \(n_{12}=-c_{13} c_{24} c_{31} c_{42} c_{56} c_{65}+c_{13} c_{24} c_{31} c_{46}\) \( c_{52} c_{65}+c_{13} c_{24} c_{32}c_{41} c_{56} c_{65}-c_{13} c_{24} c_{32} c_{46} c_{51} c_{65}-c_{13} c_{24} c_{36}\) \( c_{41} c_{52} c_{65}+c_{13} c_{24} c_{36} c_{42} c_{51} c_{65}+c_{13} c_{25} c_{31} c_{42} c_{56} c_{64}-c_{13} c_{25}\) \( c_{31} c_{46} c_{52} c_{64}-c_{13} c_{25} c_{32} c_{41} c_{56} c_{64}+_{42} c_{51} c_{64}+c_{14} c_{23} c_{31} c_{42}\) \( c_{56} c_{65}-c_{14} c_{23} c_{31} c_{46} c_{52} c_{65}-c_{14} c_{23} c_{32} c_{41} c_{56} c_{65}+c_{14} c_{23} c_{32}\) \( c_{46} c_{51} c_{65}+c_{14} c_{23} c_{36} c_{41} c_{52} c_{65}-c_{14} c_{23} c_{36} c_{42} c_{51} c_{65}+c_{14} c_{25}\) \( c_{31} c_{42} c_{56} c_{63}+c_{14} c_{25} c_{31} c_{46} c_{52} c_{63}+ c_{14} c_{25} c_{32} c_{41} c_{56} c_{63}-c_{14} c_{25} c_{32} c_{46} c_{51} c_{63}-c_{14} c_{25} c_{36} c_{41} c_{52} c_{63}+c_{14} c_{25} c_{36} c_{42} c_{51}\) \( c_{63}-c_{15} c_{23} c_{31} c_{42} c_{56} c_{64}+c_{15} c_{23} c_{31} c_{46} c_{52} c_{64}c_{15} c_{23} c_{36} c_{41}\) \( c_{52} c_{64}+c_{15} c_{23} c_{36} c_{42} c_{51} c_{64}+c_{15} c_{24} c_{31} c_{42} c_{56} c_{63}-c_{15} c_{24} c_{31}\) \( c_{46} c_{52} c_{63}-c_{15} c_{24} c_{32} c_{41} c_{56} c_{63}+c_{15} c_{24} c_{32} c_{46} c_{51} c_{63}+c_{15} c_{24}\) \( c_{36} c_{41} c_{52} c_{63}-c_{15} c_{24} c_{36} c_{42} c_{51} c_{63}-c_{13} c_{24} c_{31} c_{42} c_{57} c_{75}+c_{13} c_{24} c_{31} c_{47} c_{52} c_{75}+c_{13} c_{24} c_{32} c_{41} c_{57} c_{75}-c_{13} c_{24} c_{32} c_{47} c_{51}\) \( c_{75}-c_{13} c_{24} c_{37} c_{41} c_{52} c_{75}+c_{13} c_{24} c_{37} c_{42} c_{51} c_{75}+c_{13} c_{25} c_{31} c_{42}\) \( c_{57} c_{74}-c_{13} c_{25} c_{31} c_{47} c_{52} c_{74}-c_{13} c_{25} c_{32} c_{41} c_{57} c_{74}+c_{13} c_{25} c_{32}\) \( c_{47} c_{51} c_{74}+c_{13} c_{25} c_{37} c_{41} c_{52} c_{74}-c_{13} c_{25} c_{37} c_{42} c_{51} c_{74}+c_{14} c_{23}\) \( c_{31} c_{42} c_{57} c_{75}-c_{14} c_{23} c_{31} c_{47} c_{52} c_{75}-c_{14} c_{23} c_{32} c_{41} c_{57} c_{75}+c_{14} c_{23} c_{32} c_{47} c_{51} c_{75}+c_{14} c_{23} c_{37} c_{41} c_{52} c_{75}-c_{14} c_{23} c_{37} c_{42} c_{51}\) \( c_{75}-c_{14} c_{25} c_{31} c_{42} c_{57} c_{73}+c_{14} c_{25} c_{31} c_{47} c_{52} c_{73}+c_{14} c_{25} c_{32} c_{41}\) \( c_{57} c_{73}-c_{14} c_{25} c_{32} c_{47} c_{51} c_{73}-c_{14} c_{25} c_{37} c_{41} c_{52} c_{73}+c_{14} c_{25} c_{37}\) \( c_{42} c_{51} c_{73}-c_{15} c_{23} c_{31} c_{42} c_{57} c_{74}+c_{15} c_{23} c_{31} c_{47} c_{52} c_{74}+c_{15} c_{23}\) \( c_{32} c_{41} c_{57} c_{74}-c_{15} c_{23} c_{32} c_{47} c_{51} c_{74}-c_{15} c_{23} c_{37} c_{41} c_{52} c_{74}+c_{15} c_{23} c_{37} c_{42} c_{51} c_{74}+c_{15} c_{24} c_{31} c_{42} c_{57} c_{73}-c_{15} c_{24} c_{31} c_{47} c_{52}\) \( c_{73}-c_{15} c_{24} c_{32} c_{41} c_{57} c_{73}+c_{15} c_{24} c_{32} c_{47} c_{51} c_{73}+c_{15} c_{24} c_{37} c_{41}\) \( c_{52} c_{73}-c_{15} c_{24} c_{37} c_{42} c_{51} c_{73}-c_{13} c_{31} c_{46} c_{57} c_{64} c_{75}+c_{13} c_{31} c_{46}\) \( c_{57} c_{65} c_{74}+c_{13} c_{31} c_{47} c_{56} c_{64} c_{75}-c_{13} c_{31} c_{47} c_{56} c_{65} c_{74}+c_{13} c_{36}\) \( c_{41} c_{57} c_{64} c_{75}-c_{13} c_{36} c_{41} c_{57} c_{65} c_{74}-c_{13} c_{36} c_{47} c_{51} c_{64} c_{75}+c_{13} c_{36} c_{47} c_{51} c_{65} c_{74}-c_{13} c_{37} c_{41} c_{56} c_{64} c_{75}+c_{13} c_{37} c_{41} c_{56} c_{65}\) \( c_{74}+c_{13} c_{37} c_{46} c_{51} c_{64} c_{75}-c_{13} c_{37} c_{46} c_{51} c_{65} c_{74}+c_{14} c_{31} c_{46} c_{57}\) \( c_{63} c_{75}-c_{14} c_{31} c_{46} c_{57} c_{65} c_{73}-c_{14} c_{31} c_{47} c_{56} c_{63} c_{75}+c_{14} c_{31} c_{47}\) \( c_{56} c_{65} c_{73}-c_{14} c_{36} c_{41} c_{57} c_{63} c_{75}+c_{14} c_{36} c_{41} c_{57} c_{65} c_{73}+c_{14}\) \( c_{36} c_{47} c_{51} c_{63} c_{75}-c_{14} c_{36} c_{47} c_{51} c_{65} c_{73}+c_{14} c_{37} c_{41} c_{56} c_{63} c_{75}-c_{14} c_{37} c_{41} c_{56} c_{65} c_{73}-c_{14} c_{37} c_{46} c_{51} c_{63} c_{75}+c_{14} c_{37} c_{46} c_{51} c_{65}\) \( c_{73}-c_{15} c_{31} c_{46} c_{57} c_{63} c_{74}+c_{15} c_{31} c_{46} c_{57} c_{64} c_{73}+c_{15} c_{31} c_{47} c_{56}\) \( c_{63} c_{74}-c_{15} c_{31} c_{47} c_{56} c_{64} c_{73}+c_{15} c_{36} c_{41} c_{57} c_{63} c_{74}-c_{15} c_{36} c_{41}\) \( c_{57} c_{64} c_{73}-c_{15} c_{36} c_{47} c_{51} c_{63} c_{74}+c_{15} c_{36} c_{47} c_{51} c_{64} c_{73}-c_{15} c_{37}\) \( c_{41} c_{56} c_{63} c_{74}+c_{15} c_{37} c_{41} c_{56} c_{64} c_{73}+c_{15} c_{37} c_{46} c_{51} c_{63} c_{74}-c_{15} c_{37} c_{46} c_{51} c_{64} c_{73}-c_{23} c_{32} c_{46} c_{57} c_{64} c_{75}+c_{23} c_{32} c_{46} c_{57} c_{65}\) \( c_{74}+c_{23} c_{32} c_{47} c_{56} c_{64} c_{75}-c_{23} c_{32} c_{47} c_{56} c_{65} c_{74}+c_{23} c_{36} c_{42} c_{57}\) \( c_{64} c_{75}-c_{23} c_{36} c_{42} c_{57} c_{65} c_{74}-c_{23} c_{36} c_{47} c_{52} c_{64} c_{75}+c_{23} c_{36} c_{47}\) \( c_{52} c_{65} c_{74}-c_{23} c_{37} c_{42} c_{56} c_{64} c_{75}+c_{23} c_{37} c_{42} c_{56} c_{65} c_{74}+c_{23}\) \( c_{37} c_{46} c_{52} c_{64} c_{75}-c_{23} c_{37} c_{46} c_{52} c_{65} c_{74}+c_{24} c_{32} c_{46} c_{57} c_{63} c_{75}-c_{24} c_{32} c_{46} c_{57} c_{65} c_{73}-c_{24} c_{32} c_{47} c_{56} c_{63} c_{75}+c_{24} c_{32} c_{47} c_{56} c_{65}\) \( c_{73}-c_{24} c_{36} c_{42} c_{57} c_{63} c_{75}+c_{24} c_{36} c_{42} c_{57} c_{65} c_{73}+c_{24} c_{36} c_{47} c_{52}\) \( c_{63} c_{75}-c_{24} c_{36} c_{47} c_{52} c_{65} c_{73}+c_{24} c_{37} c_{42} c_{56} c_{63} c_{75}-c_{24} c_{37} c_{42}\) \( c_{56} c_{65} c_{73}-c_{24} c_{37} c_{46} c_{52} c_{63} c_{75}+c_{24} c_{37} c_{46} c_{52} c_{65} c_{73}-c_{25} c_{32}\) \( c_{46} c_{57} c_{63} c_{74}+c_{25} c_{32} c_{46} c_{57} c_{64} c_{73}+c_{25} c_{32} c_{47} c_{56} c_{63} c_{74}-c_{25} c_{32} c_{47} c_{56} c_{64} c_{73}+c_{25} c_{36} c_{42} c_{57} c_{63} c_{74}-c_{25} c_{36} c_{42} c_{57} c_{64}\) \( c_{73}-c_{25} c_{36} c_{47} c_{52} c_{63} c_{74}+c_{25} c_{36} c_{47} c_{52} c_{64} c_{73}-c_{25} c_{37} c_{42} c_{56}\) \( c_{63} c_{74}+c_{25} c_{37} c_{42} c_{56} c_{64} c_{73}+c_{25} c_{37} c_{46} c_{52} c_{63} c_{74}- c_{25} c_{37} c_{46}\) \( c_{52} c_{64} c_{73}\),
\(n_{13}=3k^{2}(c_{13}c_{24}c_{31}c_{42}-c_{13}c_{24}c_{32}c_{41}-c_{14}c_{23}c_{31}c_{42}+c_{14}c_{23}c_{32}c_{41}+c_{13}c_{25}c_{31}c_{52} -c_{13}c_{25}c_{32}c_{51}-c_{15}c_{23}c_{31}c_{52}+c_{15}c_{23}c_{32}c_{51}+c_{14}c_{25}c_{41}c_{52}-c_{14}c_{25}c_{42}c_{51}- c_{15}c_{24}c_{41}c_{52} + c_{15}c_{24}c_{42}c_{51} +c_{13}c_{31}c_{46}c_{64}-c_{13}c_{36}c_{41}c_{64}-c_{14}c_{31}c_{46}c_{63}+c_{14}c_{36}c_{41}c_{63}+c_{13}c_{31}c_{47}c_{74}+c_{13}c_{31}c_{56}c_{65}-c_{13}c_{36}c_{51}c_{65 }-c_{13}c_{37}c_{41}c_{74}-c_{14}c_{31}c_{47}c_{73}+c_{14}c_{37}c_{41}c_{73}-c_{15}c_{31}c_{56}c_{63}+c_{15}c_{36}c_{51}c_{63}+c_{23}c_{32}c_{46}c_{64} -c_{23}c_{36}c_{42}c_{64}-c_{24}c_{32}c_{46}c_{63}+c_{24}c_{36}c_{42}c_{63}+c_{13}c_{31}c_{57}c_{75}-c_{13}c_{37}c_{51}c_{75}+ c_{14}c_{41}c_{56}c_{65}-c_{14}c_{46}c_{51}c_{65}-c_{15}c_{31}c_{57}c_{73}+ c_{15}c_{37}c_{51}c_{73} -c_{15}c_{41}c_{56}c_{64}+ c_{15}c_{46}c_{51}c_{64}+c_{23}c_{32}c_{47}c_{74}+c_{23}c_{32}c_{56}c_{65}-c_{23}c_{36}c_{52}c_{65}-c_{23}c_{37}c_{42}c_{74}- c_{24}c_{32}c_{47}c_{73}+c_{24}c_{37}c_{42}c_{73}-c_{25}c_{32}c_{56}c_{63}+c_{25}c_{36}c_{52}c_{63}+c_{14}c_{41}c_{57}c_{75}- c_{14}c_{47}c_{51}c_{75}-c_{15}c_{41}c_{57}c_{74}+c_{15}c_{47}c_{51}c_{74}+c_{23}c_{32}c_{57}c_{75}-c_{23}c_{37}c_{52}c_{75}+ c_{24}c_{42}c_{56}c_{65}-c_{24}c_{46}c_{52}c_{65}-c_{25}c_{32}c_{57}c_{73}+c_{25}c_{37}c_{52}c_{73}-c_{25}c_{42}c_{56}c_{64}+ c_{25}c_{46}c_{52}c_{64}+c_{24}c_{42}c_{57}c_{75}-c_{24}c_{47}c_{52}c_{75}-c_{25}c_{42}c_{57}c_{74}+c_{25}c_{47}c_{52}c_{74} + c_{36}c_{47}c_{63}c_{74}-c_{36}c_{47}c_{64}c_{73}-c_{37}c_{46}c_{63} + c_{37}c_{46}c_{64}c_{73} + c_{36}c_{57}c_{63}c_{75}-c_{36}c_{57}c_{65}c_{73}-c_{37}c_{56}c_{63}c_{75}+c_{37}c_{56}c_{65}c_{73}+c_{46}c_{57}c_{64}c_{75}- c_{46}c_{57}c_{65}c_{74}- c_{47}c_{56}c_{64}c_{75} +c_{47}c_{56}c_{65}c_{74})\),
\(n_{14}=-5k^{4}(c_{13}c_{31}+c_{14}c_{41}+c_{23}c_{32}+c_{15}c_{51}+c_{24}c_{42}+c_{25}c_{52}+c_{36}c_{63}+c_{37}c_{73}+c_{47}c_{74}+c_{56}c_{65}+c_{57}c_{75}+c_{46}c_{64})\), \(n_{15}=7k^{6}\), \(n_{16}= -c_{13} c_{24} c_{31} c_{42} c_{56} c_{65} {k}+c_{13} c_{24} c_{31} c_{46} c_{52} c_{65} {k} + c_{13} c_{24} c_{32} c_{41} c_{56} c_{65} {k} -c_{13} c_{24} c_{32} c_{46}\) \( c_{51} c_{65} {k} - c_{13} c_{24} c_{36} c_{41} c_{52} c_{65} {k} + c_{13} c_{24} c_{36} c_{42} c_{51} c_{65} {k} + c_{13} c_{25}\) \( c_{31} c_{42} c_{56} c_{64} {k} - c_{13} c_{25} c_{31} c_{46} c_{52} c_{64} {k} - c_{13} c_{25} c_{32} c_{41} c_{56} c_{64} {k} + c_{13} c_{25} c_{32} c_{46} c_{51} c_{64} {k} + c_{13} c_{25} c_{36} c_{41} c_{52} c_{64} {k} - c_{13} c_{25} c_{36} c_{42}\) \( c_{51} c_{64} {k} + c_{14} c_{23} c_{31} c_{42} c_{56} c_{65} {k} - c_{14} c_{23} c_{31} c_{46} c_{52} c_{65} {k} - c_{14} c_{23}\) \( c_{32} c_{41} c_{56} c_{65} {k} + c_{14} c_{23} c_{32} c_{46} c_{51} c_{65} {k} + c_{14} c_{23} c_{36} c_{41} c_{52} c_{65} {k} - c_{14} c_{23} c_{36} c_{42} c_{51} c_{65} {k} - c_{14} c_{25} c_{31} c_{42} c_{56} c_{63} {k} + c_{14} c_{25} c_{31} c_{46} c_{52}\) \( c_{63} {k} + c_{14} c_{25} c_{32} c_{41} c_{56} c_{63} {k} -c_{14} c_{25} c_{32} c_{46} c_{51} c_{63} {k} - c_{14} c_{25} c_{36}\) \( c_{41} c_{52} c_{63} {k} + c_{14} c_{25} c_{36} c_{42} c_{51} c_{63} {k} - c_{15} c_{23} c_{31} c_{42} c_{56} c_{64} {k} + c_{15} c_{23} c_{31} c_{46} c_{52} c_{64} {k} + c_{15} c_{23} c_{36} c_{41} c_{52} c_{64} {k} + c_{15} c_{23} c_{36} c_{42} c_{51}\) \( c_{64} {k} + c_{15} c_{24} c_{31} c_{42} c_{56} c_{63} {k} - c_{15} c_{24} c_{31} c_{46} c_{52} c_{63} {k} - c_{15} c_{24} c_{32}\) \( c_{41} c_{56} c_{63} {k} + c_{15} c_{24} c_{32} c_{46} c_{51} c_{63} {k} + c_{15} c_{24} c_{36} c_{41} c_{52} c_{63} {k} - c_{15} c_{24} c_{36} c_{42} c_{51} c_{63} {k} - c_{13} c_{24} c_{31} c_{42} c_{57} c_{75} {k} + c_{13} c_{24} c_{31} c_{47}\) \( c_{52} c_{75} {k} + c_{13} c_{24} c_{32} c_{41} c_{57} c_{75} {k} - c_{13} c_{24} c_{32} c_{47} c_{51} c_{75} {k} - c_{13}\) \( c_{24} c_{37} c_{41} c_{52} c_{75} {k} + c_{13} c_{24} c_{37} c_{42} c_{51} c_{75} {k} + c_{13} c_{25} c_{31} c_{42} c_{57} c_{74}\) \( {k} - c_{13} c_{25} c_{31} c_{47} c_{52} c_{74} {k} - c_{13} c_{25} c_{32} c_{41} c_{57} c_{74} {k} + c_{13} c_{25} c_{32} c_{47}\) \( c_{51} c_{74} {k} + c_{13} c_{25} c_{37} c_{41} c_{52} c_{74} {k} - c_{13} c_{25} c_{37} c_{42} c_{51} c_{74} {k} + c_{14} c_{23}\) \( c_{31} c_{42} c_{57} c_{75} {k} - c_{14} c_{23} c_{31} c_{47} c_{52} c_{75} {k} - c_{14} c_{23} c_{32} c_{41} c_{57} c_{75} {k} + c_{14} c_{23} c_{32} c_{47} c_{51} c_{75} {k} + c_{14} c_{23} c_{37} c_{41} c_{52} c_{75} {k} - c_{14} c_{23} c_{37} c_{42} c_{51}\) \( c_{75} {k} - c_{14} c_{25} c_{31} c_{42} c_{57} c_{73} {k} + c_{14} c_{25} c_{31} c_{47} c_{52} c_{73} {k} + c_{14} c_{25} c_{32}\) \( c_{41} c_{57} c_{73} {k} - c_{14} c_{25} c_{32} c_{47} c_{51} c_{73} {k} - c_{14} c_{25} c_{37} c_{41} c_{52} c_{73} {k} + c_{14} c_{25} c_{37} c_{42} c_{51} c_{73} {k} - c_{15} c_{23} c_{31} c_{42} c_{57} c_{74} {k} + c_{15} c_{23} c_{31} c_{47}\) \( c_{52} c_{74} {k} + c_{15} c_{23} c_{32} c_{41} c_{57} c_{74} {k} - c_{15} c_{23} c_{32} c_{47} c_{51} c_{74} {k} - c_{15} c_{23}\) \( c_{37} c_{41} c_{52} c_{74} {k} + c_{15} c_{23} c_{37} c_{42} c_{51} c_{74} {k} + c_{15} c_{24} c_{31} c_{42} c_{57} c_{73}\) \( {k} - c_{15} c_{24} c_{31} c_{47} c_{52} c_{73} {k} - c_{15} c_{24} c_{32} c_{41} c_{57} c_{73} {k} + c_{15} c_{24} c_{32} c_{47}\) \( c_{51} c_{73} {k} + c_{15} c_{24} c_{37} c_{41} c_{52} c_{73} {k} - c_{15} c_{24} c_{37} c_{42} c_{51} c_{73} {k} - c_{13} c_{31}\) \( c_{46} c_{57} c_{64} c_{75} {k} + c_{13} c_{31} c_{46} c_{57} c_{65} c_{74} {k} + c_{13} c_{31} c_{47} c_{56} c_{64} c_{75} {k} - c_{13} c_{31} c_{47} c_{56} c_{65} c_{74} {k} + c_{13} c_{36} c_{41} c_{57} c_{64} c_{75} {k} - c_{13} c_{36} c_{41} c_{57} c_{65}\) \( c_{74} {k} - c_{13} c_{36} c_{47} c_{51} c_{64} c_{75} {k} + c_{13} c_{36} c_{47} c_{51} c_{65} c_{74} {k} - c_{13} c_{37}\) \( c_{41} c_{56} c_{64} c_{75} {k} + c_{13} c_{37} c_{41} c_{56} c_{65} c_{74} {k} + c_{13} c_{37} c_{46} c_{51} c_{64} c_{75} {k} - c_{13} c_{37} c_{46} c_{51} c_{65} c_{74} {k} + c_{14} c_{31} c_{46} c_{57} c_{63} c_{75} {k} - c_{14} c_{31} c_{46} c_{57} c_{65}\) \( c_{73} {k} - c_{14} c_{31} c_{47} c_{56} c_{63} c_{75} {k} + c_{14} c_{31} c_{47} c_{56} c_{65} c_{73} {k} - c_{14} c_{36} c_{41}\) \( c_{57} c_{63} c_{75} {k} + c_{14} c_{36} c_{41} c_{57} c_{65} c_{73} {k} + c_{14} c_{36} c_{47} c_{51} c_{63} c_{75} {k} - c_{14} c_{36} c_{47} c_{51} c_{65} c_{73} {k} + c_{14} c_{37} c_{41} c_{56} c_{63} c_{75} {k} - c_{14} c_{37} c_{41} c_{56} c_{65}\) \( c_{73} {k} - c_{14} c_{37} c_{46} c_{51} c_{63} c_{75} {k} + c_{14} c_{37} c_{46} c_{51} c_{65} c_{73} {k} - c_{15} c_{31}\) \( c_{46} c_{57} c_{63} c_{74} {k} + c_{15} c_{31} c_{46} c_{57} c_{64} c_{73} {k} + c_{15} c_{31} c_{47} c_{56} c_{63} c_{74} {k} - c_{15} c_{31} c_{47} c_{56} c_{64} c_{73} {k} + c_{15} c_{36} c_{41} c_{57} c_{63} c_{74} {k} - c_{15} c_{36} c_{41} c_{57}\) \( c_{64} c_{73} {k} - c_{15} c_{36} c_{47} c_{51} c_{63} c_{74} {k} + c_{15} c_{36} c_{47} c_{51} c_{64} c_{73} {k} - c_{15} c_{37}\) \( c_{41} c_{56} c_{63} c_{74} {k} + c_{15} c_{37} c_{41} c_{56} c_{64} c_{73} {k} + c_{15} c_{37} c_{46} c_{51} c_{63} c_{74} {k} - c_{15} c_{37} c_{46} c_{51} c_{64} c_{73} {k} - c_{23} c_{32} c_{46} c_{57} c_{64} c_{75} {k} + c_{23} c_{32} c_{46} c_{57}\) \( c_{65} c_{74} {k} + c_{23} c_{32} c_{47} c_{56} c_{64} c_{75} {k} - c_{23} c_{32} c_{47} c_{56} c_{65} c_{74} {k} + c_{23} c_{36}\) \( c_{42} c_{57} c_{64} c_{75} {k} - c_{23} c_{36} c_{42} c_{57} c_{65} c_{74} {k} - c_{23} c_{36} c_{47} c_{52} c_{64} c_{75} {k} + c_{23} c_{36} c_{47} c_{52} c_{65} c_{74} {k} - c_{23} c_{37} c_{42} c_{56} c_{64} c_{75} {k} +c_{23} c_{37} c_{42} c_{56} c_{65}\) \( c_{74} {k} + c_{23} c_{37} c_{46} c_{52} c_{64} c_{75} {k} - c_{23} c_{37} c_{46} c_{52} c_{65} c_{74} {k} + c_{24} c_{32} c_{46}\) \( c_{57} c_{63} c_{75} {k} - c_{24} c_{32} c_{46} c_{57} c_{65} c_{73} {k} - c_{24} c_{32} c_{47} c_{56} c_{63} c_{75} {k} + c_{24} c_{32} c_{47} c_{56} c_{65} c_{73} {k} - c_{24} c_{36} c_{42} c_{57} c_{63} c_{75} {k} + c_{24} c_{36} c_{42} c_{57}\) \( c_{65} c_{73} {k} + c_{24} c_{36} c_{47} c_{52} c_{63} c_{75} {k} - c_{24} c_{36} c_{47} c_{52} c_{65} c_{73} {k} + c_{24} c_{37}\) \( c_{42} c_{56} c_{63} c_{75} {k} - c_{24} c_{37} c_{42} c_{56} c_{65} c_{73} {k} - c_{24} c_{37} c_{46} c_{52} c_{63} c_{75} {k} + c_{24} c_{37} c_{46} c_{52} c_{65} c_{73} {k} - c_{25} c_{32} c_{46} c_{57} c_{63} c_{74} {k} + c_{25} c_{32} c_{46} c_{57}\) \( c_{64} c_{73} {k} + c_{25} c_{32} c_{47} c_{56} c_{63} c_{74} {k} - c_{25} c_{32} c_{47} c_{56} c_{64} c_{73} {k} + c_{25} c_{36}\) \( c_{42} c_{57} c_{63} c_{74} {k} - c_{25} c_{36} c_{42} c_{57} c_{64} c_{73} {k} - c_{25} c_{36} c_{47} c_{52} c_{63} c_{74}\) \( {k} + c_{25} c_{36} c_{47} c_{52} c_{64} c_{73} {k} - c_{25} c_{37} c_{42} c_{56} c_{63} c_{74} {k} + c_{25} c_{37} c_{42}\) \( c_{56} c_{64} c_{73} {k} + c_{25} c_{37} c_{46} c_{52} c_{63} c_{74} {k} - c_{25} c_{37} c_{46} c_{52} c_{64} c_{73} {k}\),
\(n_{17}={k}^{3} (c_{13} c_{24} c_{31} c_{42}-c_{13} c_{24} c_{32} c_{41}-c_{14} c_{23} c_{31} c_{42}+ c_{14} c_{23} c_{32} c_{41}+c_{13} c_{25} c_{31} c_{52}- c_{13} c_{25} c_{32} c_{51} - c_{15} c_{23} c_{31} c_{52} + c_{15} c_{23} c_{32} c_{51} + c_{14} c_{25} c_{41} c_{52} - c_{14} c_{25} c_{42} c_{51}- c_{15} c_{24} c_{41} c_{52}+ c_{15} c_{24} c_{42} c_{51} + c_{13} c_{31} c_{46} c_{64} - c_{13} c_{36} c_{41} c_{64} -c_{14} c_{31} c_{46} c_{63}+ c_{14} c_{36} c_{41} c_{63}+ c_{13} c_{31} c_{47} c_{74} +c_{13} c_{31} c_{56} c_{65}- c_{13} c_{36} c_{51} c_{65} - c_{13} c_{37} c_{41} c_{74}-c_{14} c_{31} c_{47} c_{73}+c_{14} c_{37} c_{41} c_{73}-c_{15} c_{31} c_{56} c_{63}+c_{15} c_{36} c_{51} c_{63} + c_{23} c_{32} c_{46} c_{64} - c_{23} c_{36} c_{42} c_{64} - c_{24} c_{32} c_{46} c_{63} + c_{24} c_{36} c_{42} c_{63}+c_{13} c_{31} c_{57} c_{75}-c_{13} c_{37} c_{51} c_{75}+c_{14} c_{41} c_{56} c_{65}-c_{14} c_{46} c_{51} c_{65}-c_{15} c_{31} c_{57} c_{73} + c_{15} c_{37} c_{51} c_{73} - c_{15} c_{41} c_{56} c_{64}+ c_{15} c_{46} c_{51} c_{64} + c_{23} c_{32} c_{47} c_{74}+ c_{23} c_{32} c_{56} c_{65}- c_{23} c_{36} c_{52} c_{65} - c_{23} c_{37} c_{42} c_{74}- c_{24} c_{32} c_{47} c_{73} +c_{24} c_{37} c_{42} c_{73}- c_{25} c_{32} c_{56} c_{63} {k}^{3}\) \( + c_{25} c_{36} c_{52} c_{63} +c_{14} c_{41} c_{57} c_{75}- c_{14} c_{47} c_{51} c_{75} - c_{15} c_{41} c_{57} c_{74}+c_{15} c_{47} c_{51} c_{74} + c_{23} c_{32} c_{57} c_{75} -c_{23} c_{37} c_{52} c_{75} +c_{24} c_{42} c_{56} c_{65} -c_{24} c_{46} c_{52} c_{65} -c_{25} c_{32} c_{57} c_{73}+c_{25} c_{37} c_{52} c_{73} -c_{25} c_{42} c_{56} c_{64}+c_{25} c_{46} c_{52} c_{64} + c_{24} c_{42} c_{57} c_{75}- c_{24} c_{47} c_{52} c_{75} -c_{25} c_{42} c_{57} c_{74}+c_{25} c_{47} c_{52} c_{74} +c_{36} c_{47} c_{63} c_{74} - c_{36} c_{47} c_{64} c_{73} - c_{37} c_{46} c_{63} c_{74}+ c_{37} c_{46} c_{64} c_{73} +c_{36} c_{57} c_{63} c_{75} -c_{36} c_{57} c_{65} c_{73} - c_{37} c_{56} c_{63} c_{75}+ c_{37} c_{56} c_{65} c_{73} + c_{46} c_{57} c_{64} c_{75} -c_{46} c_{57} c_{65} c_{74} - c_{47} c_{56} c_{64} c_{75}+c_{47} c_{56} c_{65} c_{74})\),
\(n_{18}=-{k}^{5}(c_{13} c_{31}+c_{14} c_{41}+c_{23} c_{32}+c_{15} c_{51}+c_{24} c_{42}+c_{25} c_{52}+c_{36} c_{63}+c_{37} c_{73}+c_{46} c_{64}+c_{47} c_{74}+c_{56} c_{65}+ c_{57} c_{75})\),
\(n_{19}={k}^{7}\).
Appendix B
Concrete expressions in system (30)
Appendix C
\(P'_{1}(s)=7qs^{7q-1}+6qn_{1}s^{6q-1}+5qn_{3}s^{5q-1}+4qn_{5}s^{4q-1}+3qn_{8}s^{3q-1}+2qn_{11}s^{2q-1}+qn_{15}s^{q-1}\),
\(P'_{2}(s)\!=\!5qn_{2}s^{5q-1}+4qn_{4}s^{4q-1}+3qn_{7}s^{3q-1}+2qn_{10}s^{2q-1}\) \(+qn_{14}s^{q-1}\),
\(P'_{3}(s)=3qn_{6}s^{3q-1}+2qn_{9}s^{2q-1}+qn_{13}s^{q-1}\),
\(P'_{4}(s)=qn_{12}s^{q-1}\).
Appendix D
\(A'_{1}(\omega )=7q\omega ^{7q-1}cos((7q-1)\pi /2)+6qn_{1}\omega ^{6q-1}cos((6q-1)\pi /2)+5qn_{3}\omega ^{5q-1}cos((5q-1)\pi /2)+4qn_{5}\omega ^{4q-1}cos((4q-1)\pi /2)+3qn_{8}\omega ^{3q-1}cos((3q-1)\pi /2)+2qn_{11}\omega ^{2q-1}cos((2q-1)\pi /2)+qn_{15}\omega ^{q-1}cos((q-1)\pi /2),\)
\(B'_{1}(\omega )=7q\omega ^{7q-1}sin((7q-1)\pi /2)+6qn_{1}\omega ^{6q-1}sin((6q-1)\pi /2)+5qn_{3}\omega ^{5q-1}sin((5q-1)\pi /2)+4qn_{5}\omega ^{4q-1}sin((4q-1)\pi /2)+3qn_{8}\omega ^{3q-1}\) \(sin((3q-1)\pi /2)+2qn_{11}\omega ^{2q-1}sin((2q-1)\pi /2)+qn_{15}\omega ^{q-1}sin((q-1)\pi /2),\)
\(A'_{2}(\omega )=5qn_{2}\omega ^{5q-1}cos((5q-1)\pi /2)+4qn_{4}\omega ^{4q-1}cos((4q-1)\pi /2)+3qn_{7}\omega ^{3q-1}cos((3q-1)\pi /2)+2qn_{10}\omega ^{2q-1}cos((2q-1)\pi /2)+qn_{14}\omega ^{q-1}cos((q-1)\pi /2)\),
\(B'_{2}(\omega )=5qn_{2}\omega ^{5q-1}sin((5q-1)\pi /2)+4qn_{4}\omega ^{4q-1}sin((4q-1)\pi /2)+3qn_{7}\omega ^{3q-1}sin((3q-1)\pi /2)+2qn_{10}\omega ^{2q-1}sin((2q-1)\pi /2)+qn_{14}\omega ^{q-1}sin((q-1)\pi /2)\),
\(A'_{3}(\omega )=3qn_{6}\omega ^{3q-1}cos((3q-1)\pi /2)+2qn_{9}\omega ^{2q-1}cos((2q-1)\pi /2)+qn_{13}\omega ^{q-1}cos((q-1)\pi /2)\),
\(B'_{3}(\omega )=3qn_{6}\omega ^{3q-1}sin((3q-1)\pi /2)+2qn_{9}\omega ^{2q-1}sin((2q-1)\pi /2)+qn_{13}\omega ^{q-1}sin((q-1)\pi /2)\),
\(A'_{4}(\omega )=qn_{12}\omega ^{q-1}cos((q-1)\pi /2)\),
\(B'_{4}(\omega )=qn_{12}\omega ^{q-1}cos((q-1)\pi /2)\),
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, X., Cheng, Z., Xin, Y. et al. Dynamic Behavior of Three-Layer Fractional-Order Neural Networks with Multiple Delays. Cogn Comput 17, 48 (2025). https://doi.org/10.1007/s12559-025-10411-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12559-025-10411-7