Abstract
The manual construction of business process models is a time-consuming, error-prone task and presents an obstacle to business agility. To facilitate the construction of such models, several modeling support techniques have been suggested. However, while recommendation systems are widely used, e.g., in e-commerce, these techniques are rarely implemented in process modeling tools. The creation of such systems is a complex task since a large number of requirements and parameters have to be taken into account. In order to improve the situation, the authors have developed a data model that can serve as a backbone for the development of process modeling recommender systems (PMRS). This article outlines the systematic development of this model in a stepwise approach using established requirements and validates it against a data model that has been reverse-engineered from a real-world system. In a last step, the paper illustrates an exemplary instantiation of the data model in a Smart Glasses-based modeling environment and discusses business process agility issues. The authors expect their contribution to provide a useful starting point for designing the data perspective of process modeling recommendation features that support business agility in process-intensive environments.











Similar content being viewed by others
References
Blinn N, Nüttgens M (2010) Empowering technical customer services with intelligent mobile applications: a contingency theory-based approach. In: Proceedings of the IFIP 8.2 Organizations and Society in Information Systems Pre-ICIS Workshop, St. Louis, Working Papers on Information Systems 10 (107)
Born M, Brelage C, Markovic I et al (2009) Auto-completion for executable business process models. Business process management workshops. Springer, Heidelberg, pp 510–515
Clever N, Holler J, Shitkova M, Becker J (2013) Towards Auto-Suggested Process Modeling Prototypical Development of an Auto-Suggest Component for Process Modeling Tools. In: Proceedings of the 5th International Workshop on Enterprise Modeling and Information Systems Architectures, St. Gallen, pp 133–145
Fellmann M, Heitmann C, Metzger D, Nobbe L, Thomas O (2015a) TKD 4.0 – Klassifikation, Einordnung und Bewertung der Einsatzpotenziale von Augmented-Reality-Anwendungen für den Technischen Kundendienst. In: Thomas O (ed): Living Lab Business Process Management Research Report No. 10, Osnabrück
Fellmann M, Zarvic N, Metzger D, Koschmider A (2015b) Requirements catalog for business process modeling recommender systems. In: Thomas O, Teuteberg F (eds) Proceedings of the 12th International Conference on Wirtschaftsinformatik, Osnabrück, pp 393-407
Fellmann M, Metzger D, Thomas O (2016) Data model development for process modeling recommender systems. In: 9th IFIP WG 8.1 Working Conference on the Practice of Enterprise Modeling, LNBIP 267, Skövde, pp 87–101
Henderson S, Feiner S (2011) Exploring the benefits of augmented reality documentation for maintenance and repair. IEEE Trans Vis Comput Graphics 17(10):1355–1368. https://doi.org/10.1109/TVCG.2010.245
Hornung T, Koschmider A, Lausen G (2008) Recommendation based process modeling support: method and user experience. In: Li Q, Spaccapietra S, Yu E, Olivé A (eds) Conceptual modeling - ER 2008. Lecture notes in computer science, vol 5231. Springer, Heidelberg
Jannaber S, Zobel B, Riehle DM, et al (2017) Development of a domain-specific language for run-time process modelling – making use of wearables in BPM. In: Eibl M, Gaedke M (eds) Informatik. https://doi.org/10.18420/in2017_85
Jannach D (2011) Recommender systems: an introduction. Cambridge University Press, New York
Jannach D, Zanker M, Ge M, Gröning M (2012) Recommender systems in computer science and information systems – a landscape of research. In: Huemer C, Lops P (eds) E-commerce and web technologies. Springer, Heidelberg, pp 76–87
Koschmider A (2007) Ähnlichkeitsbasierte Modellierungsunterstützung für Geschäftsprozesse. Universität Karlsruhe, Fakultät für Wirtschaftswissenschaften, PhD thesis. KITopen ID 1000007208
Koschmider A, Hornung T, Oberweis A (2011) Recommendation-based editor for business process modeling. Data Knowl Eng 70(6):483–503. https://doi.org/10.1016/j.datak.2011.02.002
Kuschke T, Mäder P (2014) Pattern-based auto-completion of UML modeling activities. In: Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering. ACM, New York, pp 551–556
Lauesen S (2002) Software requirements: styles and techniques. Pearson Education, London
Lerchner H, Stary C (2016) Model while you work: towards effective and playful acquisition of stakeholder processes. In: Proceedings of the 8th International Conference on Subject-oriented Business Process Management. ACM, New York, pp 1-10
Li Y, Cao B, Xu L et al (2014) An efficient recommendation method for improving business process modeling. IEEE Trans Ind Inform 10(1):502–513. https://doi.org/10.1109/TII.2013.2258677
Luftman J, Zadeh HS, Derksen B et al (2012) Key information technology and management issues 2011–2012: an international study. J Inf Technol 27(3):198–212. https://doi.org/10.1057/jit.2012.14
Luftman J, Zadeh HS, Derksen B et al (2013) Key information technology and management issues 2012–2013: an international study. J Inf Technol 28(4):354–366. https://doi.org/10.1057/jit.2013.22
Matijacic M, Fellmann M, Özcan D, et al (2013) Elicitation and consolidation of requirements for mobile technical customer services support systems – a multi-method approach. In: Proceedings of the 34th International Conference on Information Systems. Milan
Mazanek S, Minas M (2009) Business process models as a showcase for syntax-based assistance in diagram editors. In: Schürr A, Selic B (eds) Model driven engineering languages and systems. Springer, Heidelberg, pp 322–336
Mazanek S, Maier S, Minas M (2008) Auto-completion for diagram editors based on graph grammars. In: IEEE Symposium on visual languages and human-centric computing, pp 242–245
Melville P, Sindhwani V (2010) Recommender systems. In: Sammut C, Webb GI (eds) Encyclopedia of machine learning. Springer, New York, pp 829–838
Metzger D, Niemöller C, Berkemeier L et al (2017) Vom Techniker zum Modellierer – Konzeption und Entwicklung eines Smart Glasses Systems zur Laufzeitmodellierung von Dienstleistungsprozessen. In: Thomas O, Nüttgens M, Fellmann M (eds) Smart service engineering. Springer Fachmedien, Wiesbaden, pp 193–213
Nielen A, Költer D, Mütze-Niewöhner S, Karla J, Schlick CM (2011) An empirical analysis of human performance and error in process model development. In: Jeusfeld M, Delcambre L, Ling TW (eds) Conceptual modeling – ER 2011. Lecture notes in computer science, vol 6998. Springer, Heidelberg
Niemöller C, Metzger D, Fellmann M, et al (2016) Shaping the future of mobile service support systems–ex-ante evaluation of smart glasses in technical customer service processes. In: Mayr, HC, Pinzger, M, (eds): Informatik von Menschen für Menschen (Informatik 2016) (LNI 259), Klagenfurt, pp 753-770
Niemöller C, Zobel B, Berkemeier L, et al (2017) Sind Smart Glasses die Zukunft der Digitalisierung von Arbeitsprozessen? Explorative Fallstudien zukünftiger Einsatzszenarien in der Logistik. In: Leimeister JM, Brenner W (eds): Proceedings of the 13th International Conference on Wirtschaftsinformatik, St. Gallen, pp 410-424
Ricci F, Rokach L, Shapira B (2011) Introduction to recommender systems handbook. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) recommender systems handbook. Springer, Boston, pp 1–35
Richardson C, Miers D (2013) The Forrester Wave™: business process management suites. Forrester Research
Sarshar K, Weber M, Loos P (2006) Einsatz der Informationsmodellierung bei der Einführung betrieblicher Standardsoftware: Eine empirische Untersuchung bei Energieversorgerunternehmen. Wirtschaftsinformatik 48(2):120–127
Sen S, Baudry B, Vangheluwe H (2010) Towards domain-specific model editors with automatic model completion. Simul 86(2):109–126. https://doi.org/10.1177/0037549709340530
Shahzad K, Elias M, Johannesson P (2010) Requirements for a business process model repository: a stakeholders’ perspective. In: Abramowicz W, Tolksdorf R (eds) Proceedings of the 13th international conference on business information systems. Springer, Heidelberg, pp 158–170
Starner T, Mann S, Rhodes B et al (1997) Augmented reality through wearable computing. Presence Teleoper Virtual Environ 6(4):386–398
Thomas O (2005) Understanding the term reference model in information systems research: history, literature analysis and explanation. In: Business Process Management Workshops. Springer, Heidelberg, pp 484–496
Thomas O (2006) Management von Referenzmodellen: Entwurf und Realisierung eines Informationssystems zur Entwicklung und Anwendung von Referenzmodellen. Logos, Berlin
Thomas O, Fellmann M (2009) Semantic process modeling – design and implementation of an ontology-based representation of business processes. Bus Inf Syst Eng 1(6):438–451
vom Brocke J, Simons A, Niehaves B, et al (2009) Reconstructing the giant: on the importance of rigour in documenting the literature search process. In: Proceedings of the 17th European Conference on Information Systems, Verona, pp 2206–2217
Weber B, Reichert M, Rinderle-Ma S (2008) Change patterns and change support features – enhancing flexibility in process-aware information systems. Data Knowl Eng 66(3):438–466. https://doi.org/10.1016/j.datak.2008.05.001
Webster J, Watson RT (2002) Analyzing the past to prepare for the future: writing a literature review. MIS Q 26(2):xiii–xxiii
Wieloch K, Filipowska A, Kaczmarek M (2011) Autocompletion for business process modelling. In: Abramowicz W (ed) Proceedings of the 14th international conference on business information systems. Springer, Heidelberg, pp 30–40
Wilmont I, Brinkkemper S, Weerd I, Hoppenbrouwers S (2010) Exploring intuitive modelling behaviour. In: Bider I, Halpin T, Krogstie J et al (eds) Enterprise, business-process and information systems modeling: proceedings of the 11th international workshop, and 15th international conference, CAiSE 2010, Hammamet. Springer, Heidelberg, pp 301–313
zur Muehlen M, Recker J, Indulska M (2007) Sometimes less is more: are process modeling languages overly complex? In: 11th International IEEE EDOC Conference Workshop, pp 197–204
Author information
Authors and Affiliations
Corresponding author
Additional information
Accepted after two revisions by the editors of the special issue.
Rights and permissions
About this article
Cite this article
Fellmann, M., Metzger, D., Jannaber, S. et al. Process Modeling Recommender Systems. Bus Inf Syst Eng 60, 21–38 (2018). https://doi.org/10.1007/s12599-018-0517-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12599-018-0517-5