Skip to main content
Log in

A new SPH fluid simulation method using ellipsoidal kernels

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

We propose a new smoothed particle hydrodynamics simulation method that utilizes ellipsoidal kernels instead of spherical kernels. In order to load fluid quantities between time-stepping into smoothed particles, kernel shapes are elongated according to the directions and magnitudes of velocities. The use of these deformable kernels allows us to efficiently simulate fast moving fluids without increasing computational cost. The experiments demonstrate that our method can reproduce the detailed movement of fast fluids by reducing numerical diffusion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams B, Pauly M, Keiser R, Guibas LJ (2007) Adaptively sampled particle fluids. ACM Trans Graph 26(3):48

    Article  Google Scholar 

  • Bargteil AW, Goktekin TG, O’brien JF, Strain JA (2006) A semi-lagrangian contouring method for fluid simulation. ACM Trans Graph 25(1):19–38

    Article  Google Scholar 

  • Becker M, Teschner M (2007) Weakly compressible sph for free surface flows. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 209–217

  • Carlson M, Mucha RJ, Turk G (2004) Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans Graph 23(3):377–384

    Article  Google Scholar 

  • Chen W, Ren L, Zwicker M, Pfister H (2004) Hardware-accelerated adaptive EWA volume splatting. In: Proceedings of IEEE visualization, pp 67–74

  • Clavet S, Beaudoin P, Poulin P (2005) Particle-based viscoelastic fluid simulation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 219–228

  • Cummins SJ, Rudman M (1999) An sph projection method. J Comp Phys 152(2):584–607

    Article  MathSciNet  MATH  Google Scholar 

  • Desbrun M, Cani MP (1994) Smoothed particles: a new paradigm for highly deformable bodies. In: 6th eurographics workshop on animation and simulation

  • Enright D, Marschner S, Fedkiw R (2002) Animation and rendering of complex water surfaces. ACM Trans Graph 21(3):736–744

    Article  Google Scholar 

  • Fey U, Konig M, Eckelmann H (1998) A new Strouhal Reynolds-number relationship for the circular cylinder in the range 47 < Re < 2 × 105. Phys Fluids 10(7):1547–1549

    Article  Google Scholar 

  • Foster N, Fedkiw R (2001) Practical animation of liquids. In: Proceedings of ACM SIGGRAPH 2001. Comput Graph 35:23–30

  • Foster N, Metaxas D (1996) Realistic animation of liquids. Graph models image process 58(5):471–483

    Article  Google Scholar 

  • Foster N, Metaxas D (1997) Controlling fluid animation. In: Computer graphics international 97, pp 178–188

  • Goktekin TG, Bargteil AW, O’Brien JF (2004) A method for animating viscoelastic fluids. ACM Trans Graph 23(3):463–468

    Article  Google Scholar 

  • Guendelman E, Selle A, Losasso F, Fedkiw R (2005) Coupling water and smoke to thin deformable and rigid shells. ACM Trans Graph 24(3):973–981

    Article  Google Scholar 

  • Heinzle S, Wolf J, Kanamori Y, Weyrich T, Nishita T, Gross M (2010) Motion blur for EWA surface splatting. Comput Graph Forum 29(2):733–742

    Google Scholar 

  • Heo N, Ko HS (2010) Detail-preserving fully-Eulerian interface tracking framework. ACM Trans Graph 29(6):176

    Google Scholar 

  • Hong JM, Kim CH (2005) Discontinuous fluids. ACM Trans Graph 24(3):915–920

    Article  Google Scholar 

  • Hong W, House DH, Keyser J (2008) Adaptive particles for incompressible fluid simulation. Vis Comput 24(7):535–543

    Article  MATH  Google Scholar 

  • Kim B, Liu Y, Llamas I, Rossignac J (2007) Advections with significantly reduced dissipation and diffusion. IEEE Trans Vis Comput Graph 13(1):135–144

    Article  Google Scholar 

  • Kim D, Song OY, Ko HS (2008) A semi-lagrangian cip fluid solver without dimensional splitting. Comput Graph Forum 27(2): 467–475

    Article  Google Scholar 

  • Kipfer P, Westermann R (2006) Realistic and interactive simulation of rivers. In: Graphics interface, pp 41–48

  • Lenaerts T, Adams B, Dutré P (2008) Porous flow in particle-based fluid simulations. ACM Trans Graph 27(3): 49

    Article  Google Scholar 

  • Lenaerts T, Dutré P (2008) Unified sph model for fluid-shell simulations. In: ACM SIGGRAPH 2008 posters, p 1

  • Losasso F, Gibou F, Fedkiw R (2004) Simulating water and smoke with an octree data structure. ACM Trans Graph 23(3):457–462

    Article  Google Scholar 

  • Losasso F, Shinar T, Selle A, Fedkiw R (2006) Multiple interacting liquids. ACM Trans Graph 25(3):812–819

    Article  Google Scholar 

  • Monaghan J (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703–1759

    Article  MathSciNet  Google Scholar 

  • Müller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 154–159

  • Müller M, Schirm S, Teschner M, Heidelberger B, Gross M (2004) Interaction of fluids with deformable solids. J Comput Animat Virtual Worlds (CAVW) 15(3–4):159–171

    Article  Google Scholar 

  • Müller M, Solenthaler B, Keiser R, Gross M (2005) Particle-based fluid-fluid interaction. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 237–244

  • Osher S, Fedkiw R (2002) The level set method and dynamic implicit surfaces. Springer, New York

    Google Scholar 

  • Owen JM, Villumsen JV, Shapiro PR, Martel H (1998) Adaptive smoothed particle hydrodynamics: methodology. ii. ApJS 166:155–209

    Article  Google Scholar 

  • Heckbert P (1989) Fundamentals of texture mapping and image warping. UC Berkeley Master’s thesis

  • Solenthaler B, Pajarola R (2008) Density contrast sph interfaces. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 211–218

  • Solenthaler B, Pajarola R (2009) Predictive-corrective incompressible sph. ACM Trans Graph 28(3):1–6

    Article  Google Scholar 

  • Solenthaler B, Schläfli J, Pajarola R (2007) A unified particle model for fluid–solid interactions. Comput Animat Virtual Worlds 18(1):69–82

    Article  Google Scholar 

  • Song OY, Kim D, Ko HS (2007) Derivative particles for simulating detailed movements of fluids. IEEE Trans Vis Comput Graph 13(4):711–719

    Article  Google Scholar 

  • Song OY, Shin H, Ko HS (2005) Stable but non-dissipative water. ACM Trans Graph 24(1):81–97

    Article  Google Scholar 

  • Stam J (1999) Stable fluids. In: Proceedings of ACM SIGGRAPH 1999. Comput Graph 33:121–128

  • Stam J, Fiume E (1995) Depicting fire and other gaseous phenomena using diffusion processes. In: Proceedings of ACM SIGGRAPH 1995. Comput Graph 29:129–136

  • Thürey N, Keiser R, Rüde U, Pauly M (2006) Detail-preserving fluid control. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 7–15

  • Zhu Y, Bridson R (2005) Animating sand as a fluid. ACM Trans Graph 24(3):965–972

    Article  Google Scholar 

  • Zwicker M, Pfister H, Baar J, Gross M (2002) EWA splatting. IEEE Trans Vis Comput Graph 8(3):223–238

    Google Scholar 

Download references

Acknowledgments

This research is supported by Ministry of Culture, Sports and Tourism (MCST) and Korea Creative Content Agency (KOCCA) in the Culture Technology (CT) Research & Developement Program 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oh-young Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (90 KB)

Below is the link to the electronic supplementary material.

PDF (90 KB)

Below is the link to the electronic supplementary material.

PDF (90 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jo, E., Kim, D. & Song, Oy. A new SPH fluid simulation method using ellipsoidal kernels. J Vis 14, 371–379 (2011). https://doi.org/10.1007/s12650-011-0092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-011-0092-z

Keywords

Navigation