Skip to main content

Advertisement

Log in

Visualization of an annular viscoplastic jet

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

The current study investigates the global flow field characteristics of a submerged annular viscoplastic jet. The mass and momentum conservation equations, governing the steady laminar flow field, along with the Bingham rheological model, are numerically solved using a finite-difference scheme. Central and outer recirculation regions typically characterize the flow of a Newtonian annular jet. However, the current visualizations demonstrate the existence of new and unique-to-viscoplastic-fluids flow features. When the yield numbers are small, central and outer recirculation regions exist. However, the extent of the outer region and recirculation intensity of the outer and central regions are found to substantially diminish with the yield number. At intermediate yield numbers, a stagnant, attached-to-the-wall region replaces the outer recirculation while a central, yet weaker one, exists. At high yield numbers, stagnant regions replace the recirculating ones, i.e., flow recirculation throughout the whole flow field is eliminated once a critical yield number is exceeded.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

d :

Inner nozzle diameter

D :

Outer nozzle diameter

D o :

Outer confinement diameter, D o = 50D

D h :

Hydraulic diameter of annular nozzle, D h = D – d

L r :

Radial extent of the computational domain, L r = D o/2

L x :

Axial extent of the computational domain

P :

Non-dimensional pressure, \( {{P^{*} } \mathord{\left/ {\vphantom {{P^{*} } \rho }} \right. \kern-0pt} \rho }u_{\text{b}}^{2} \)

r :

Non-dimensional radial distance, r*/R

R :

Outer jet radius, D/2

Re :

Reynolds number, \( {{\rho D_{\text{h}} u_{\text{b}} } \mathord{\left/ {\vphantom {{\rho D_{\text{h}} u_{\text{b}} } {\eta_{\text{p}} }}} \right. \kern-0pt} {\eta_{\text{p}} }} \)

u :

Non-dimensional streamwise velocity, u*/u b

u b :

Initial jet streamwise bulk velocity, \( 8\int_{d/2}^{D/2} {{{u^{*} r^{*} {\text{d}}r^{*} } \mathord{\left/ {\vphantom {{u^{*} r^{*} {\text{d}}r^{*} } {\left( {D^{2} - d^{2} } \right)}}} \right. \kern-0pt} {\left( {D^{2} - d^{2} } \right)}}} \)

x :

Non-dimensional streamwise distance, x*/R

Y :

Yield number, \( {{\tau_{\text{y}} D_{\text{h}} } \mathord{\left/ {\vphantom {{\tau_{\text{y}} D_{\text{h}} } {\eta_{\text{p}} u_{\text{b}} }}} \right. \kern-0pt} {\eta_{\text{p}} u_{\text{b}} }} \)

\( \dot{\gamma }_{\text{ij}} \) :

Rate of deformation tensor, \( {{\partial u_{\text{i}} } \mathord{\left/ {\vphantom {{\partial u_{\text{i}} } {\partial x_{\text{j}} }}} \right. \kern-0pt} {\partial x_{\text{j}} }} + {{\partial u_{\text{j}} } \mathord{\left/ {\vphantom {{\partial u_{\text{j}} } {\partial x_{\text{i}} }}} \right. \kern-0pt} {\partial x_{\text{i}} }} \)

\( \dot{\gamma }_{\text{II}} \) :

Second invariant of rate of deformation tensor, \( \dot{\gamma }_{\text{ij}} \) \( \dot{\gamma }_{\text{ij}} \)

η p :

Plastic viscosity

μ eff :

Non-dimensional effective viscosity, \( {{\mu_{\text{eff}}^{ * } } \mathord{\left/ {\vphantom {{\mu_{\text{eff}}^{ * } } {\eta_{\text{p}} }}} \right. \kern-0pt} {\eta_{\text{p}} }} \)

ρ :

Density

τ ij :

Stress tensor element

τ y :

Yield stress

*:

Dimensional quantities

b :

Bulk properties of initial jet

c :

Centerline properties

i :

Initial jet properties, i.e., properties at x = 0

References

  • Alexandrou AN, McGilvreay TM, Burgos G (2001) Steady Herschel–Bulkley fluid flow in three-dimensional expansions. J Non-Newton Fluid Mech 100:77–96

    Article  MATH  Google Scholar 

  • Bird RB, Dai GC, Yarusso BJ (1983) The rheology and flow of viscoplastic materials. Rev Chem Eng 1(1):1–70

    Google Scholar 

  • Chhabra RP, Richardson JF (2008) Non-Newtonian flow and applied rheology: engineering applications, 2nd edn. Butterworth-Heinemann, Oxford, UK

    Google Scholar 

  • Ellwood KRJ, Georgiou GC, Papanastasiou TC, Wilkes JO (1990) Laminar jets of Bingham plastic liquids. J Rheol 34:787–812

    Article  Google Scholar 

  • Gauglitz PA, Wells BE, Bamberger JA, Fort JA, Chun J, Jenks JJ (2010) The role of cohesive particle interactions on solids uniformity and mobilization during jet mixing: testing recommendations. Report no. PNNL-19245, prepared for the U.S. Department of Energy by the Pacific Northwest National Laboratory, Richland, Washington

  • Hammad KJ (2000) Effect of hydrodynamic conditions on heat transfer in a complex viscoplastic flow field. Int J Heat Mass Transf 43(6):945–962

    Article  MATH  Google Scholar 

  • Hammad KJ (2012) Depth of penetration of a submerged viscoplastic non-Newtonian jet. Proc ASME 44755 1: Symp Parts AB 1075. doi:10.1115/FEDSM2012-72456

  • Hammad KJ (2014) Velocity and momentum decay characteristics of a submerged viscoplastic jet. Trans ASME J Fluids Eng 136(2):021205. doi:10.1115/1.4025990

    Google Scholar 

  • Hammad KJ, Shekarriz A (1998) Turbulence in confined axisymmetric jets of Newtonian and non-Newtonian fluids. Proceedings of the ASME 1998 fluids engineering summer meeting, paper no. FEDSM98-5272

  • Hammad KJ, Wang F, Ötügen MV, Vradis GC (1997) Suddenly expanding axisymmetric flow of a yield stress fluid. Album Vis 14:17–18

    Google Scholar 

  • Hammad KJ, Ötügen MV, Vradis GC, Arik EB (1999) Laminar flow of a nonlinear viscoplastic fluid through an axisymmetric sudden expansion. Trans ASME J Fluids Eng 121(2):488–496

    Article  Google Scholar 

  • Jafri IH, Vradis GC (1998) The evolution of laminar jets of Herschel–Bulkley fluids. Int J Heat Mass Transf 41:3575–3588

    Article  MATH  Google Scholar 

  • Jay P, Magnin A, Piau JM (2001) Viscoplastic fluid flow through a sudden axisymmetric expansion. AIChE J 47:2155–2166

    Article  Google Scholar 

  • Jordan C, Rankin GW, Sridhar K (1992) A study of submerged pseudoplastic laminar jets. J Non-Newton Fluid Mech 41:323–337

    Article  Google Scholar 

  • Kumar KR, Rankin GW, Sridhar K (1984) Laminar length of a non-Newtonian fluid jet. J Non-Newton Fluid Mech 15:13–27

    Article  Google Scholar 

  • Landfried DT, Jana A, Kimber ML (2012) Characterization of the behaviour of confined laminar round jets. Proc ASME 44755. Symposia Parts A, B, vol 1, p 1037. doi:10.1115/FEDSM2012-72257

  • Mendes PRS, Naccache MF, Varges PR, Marchesini FH (2007) Flow of viscoplastic liquids through axisymmetric expansions–contractions. J Non-Newton Fluid Mech 142:207–217

    Article  MATH  Google Scholar 

  • Milanovic IM, Hammad KJ (2010) PIV study of the near-field region of a turbulent round jet. Proc ASME 49484, ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting. Symposia—Parts A, B, C, vol 1, p 1353. doi:10.1115/FEDSM-ICNMM2010-31139

  • Mitsoulis E, Huilgol RR (2004) Entry flows of Bingham plastics in expansions. J Non-Newton Fluid Mech 142:207–217

    Google Scholar 

  • Mitwally EM (1978) Solutions of laminar jet flow problems for non-Newtonian power-law fluids. Trans ASME J Fluids Eng 100(3):363–366

    Article  Google Scholar 

  • Papanastasiou TC (1987) Flow of materials with yield. J Rheol 31(5):385–403

    Article  MATH  Google Scholar 

  • Serth RW, Mayaguez PR (1972) The axisymmetric free laminar jet of a power-law fluid. J Appl Math Phys 23:131–138

    Article  Google Scholar 

  • Shekarriz A, Hammad KJ, Powell MR (1997) Evaluation of scaling correlations for mobilization of double-shell tank waste. Report no. PNNL-11737, prepared for the U.S. Department of Energy by the Pacific Northwest National Laboratory, Richland, Washington

  • Shekarriz A, Hammad KJ (1997) Submerged jet flows of Newtonian and pseudoplastic non-Newtonian fluids. Album Vis 14:23–24

    Google Scholar 

  • Wang CH, Ho JR (2008) Lattice Boltzmann modeling of Bingham plastics. Phys A 387(19–20):4740–4748

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges the support received through a 2012–2013 CSU-AAUP Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled J. Hammad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammad, K.J. Visualization of an annular viscoplastic jet. J Vis 17, 5–16 (2014). https://doi.org/10.1007/s12650-013-0190-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-013-0190-1

Keywords