Skip to main content

Advertisement

Log in

Visualization study of hybrid synthetic jets

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

A synthetic jet (SJ) is a fluid flow that is created from an oscillatory process of suction and blowing. A hybrid synthetic jet (HSJ) combines this principle with fluidic pumping through a valveless pump. The present study addresses round HSJs issuing into quiescent surroundings from an actuator orifice 8 mm in diameter. For comparison purposes, a common (zero-net-mass-flux) SJ is used. The working fluid is air, and the maximum Reynolds numbers are 11,000 and 9,000 for HSJs and SJs, respectively. The following five experimental methods are employed: flow visualization using a smoke wire technique, velocity measurements using a hot-wire anemometer, velocity measurements using a Pitot tube, impedance measurements of the actuators, and measurements of the jet momentum using precision scales. Flow visualization demonstrates phase-locked flow fields. The first resonance frequencies are theoretically derived to be 79 and 98 Hz for an SJ and HSJ, respectively. These values are confirmed by all of the experimental methods used. The results demonstrate the advantages of HSJs. The tested HSJ achieves a 24 % higher pumped volume flow rate in comparison to the SJ at a maximum volumetric efficiency of 33 %. Moreover, the overall energy efficiency of the HSJ actuator is 1.8 times higher than that of the SJ actuator. These promising HSJ features, including significantly higher efficiencies, can be useful for various heat transfer applications such as the cooling of highly loaded electronic devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amitay M, Glezer A (2002) Controlled transients of flow reattachment over stalled airfoils. Int J Heat Fluid Flow 23:690–699

    Article  Google Scholar 

  • Arik M (2007) An investigation into feasibility of impingement heat transfer and acoustic abatement of meso scale synthetic jets. Appl Therm Eng 27:1483–1494

    Article  Google Scholar 

  • Arwatz G, Fono I, Seifert A (2008) Suction and oscillatory blowing actuator modeling and validation. AIAA J 46:1107–1117

    Article  Google Scholar 

  • Ben Chiekh M, Bera JC, Sunyach M (2003) Synthetic jet control for flows in a diffuser: vectoring, spreading and mixing enhancement. J Turbul 4:1–12

    Google Scholar 

  • Ben Chiekh M, Ferchichi M, Bera J-C (2011) Modified flapping jet for increased jet spreading using synthetic jets. Int J Heat Fluid Flow 32:865–875

    Article  Google Scholar 

  • Boetcher SKS, Sparrow EM (2007) Limitations of the standard Bernoulli equation method for evaluating Pitot/impact tube data. Int J Heat Mass Transf 50:782–788

    Article  MATH  Google Scholar 

  • Cater JE, Soria J (2002) The evolution of round zero-net-mass-flux jets. J Fluid Mech 472:167–200

    Article  MATH  Google Scholar 

  • Chaudhari M, Puranik B, Agrawal A (2010) Heat transfer characteristics of synthetic jet impingement cooling. Int J Heat Mass Transf 53:1057–1069

    Article  Google Scholar 

  • Chaudhry IA, Zhong S (2014) A single circular synthetic jet issued into turbulent boundary layer. J Vis 17:101–111

    Article  Google Scholar 

  • Chen F-J, Beeler GB (2002) Virtual shaping of a two-dimensional NACA 0015 airfoil using synthetic jet actuator. AIAA Paper 2002–3273

  • Dauphinee TM (1957) Acoustic air pump. Ref Sci Instrum 28:456

    Google Scholar 

  • de Luca L, Girfoglio M, Coppola G (2014) Modeling and experimental validation of the frequency response of synthetic jet actuators. AIAA J 52:1733–1748

    Article  Google Scholar 

  • Gallas Q, Holman R, Nishida T, Carroll B, Sheplak M, Cattafesta L (2003) Lumped element modeling of piezoelectric-driven synthetic jet actuators. AIAA J 41:240–247

    Article  Google Scholar 

  • Gerlach T, Wurmus H (1995) Working principle and performance of the dynamic micropump. Sens Actuator A-Phys 50:135–140

    Article  Google Scholar 

  • Gillespie MB, Black WZ, Rinehart C, Glezer A (2006) Local convective heat transfer from a constant heat flux flat plate cooled by synthetic air jets. J Heat Transf-Trans ASME 128:990–1000

    Article  Google Scholar 

  • Glezer A, Amitay M (2002) Synthetic jets. Annu Rev Fluid Mech 34:503–529

    Article  MathSciNet  Google Scholar 

  • Greco CS, Ianiro A, Astarita T, Cardone G (2013) On the near field of single and twin circular synthetic air jets. Int J Heat Fluid Flow 44:41–52

    Article  Google Scholar 

  • Holman R, Utturkar Y, Mittal R, Smith BL, Cattafesta L (2005) Formation criterion for synthetic jets. AIAA J 43:2110–2116

    Article  Google Scholar 

  • Hsu S-S, Trávníček Z, Chou C-C, Chen C-C, Wang A-B (2013) Comparison of double-acting and single-acting synthetic jets. Sens Actuator A-Phys 203:291–299

    Article  Google Scholar 

  • James RD, Jacobs JW, Glezer A (1996) A round turbulent jet produced by an oscillating diaphragm. Phys Fluids 8:2484–2495

    Article  Google Scholar 

  • Kercher DS, Lee J-B, Brand O, Allen MG, Glezer A (2003) Microjet cooling devices for thermal management of electronics. IEEE Trans Compon Pack Manuf Technol 26:359–366

    Article  Google Scholar 

  • Kinsler LE, Frey AR, Coppens AB, Sanders JV (2000) Fundamentals of acoustics, 4th edn. Wiley, New York, pp 184–187

    Google Scholar 

  • Kordík J, Trávníček Z (2013a) Axisymmetric synthetic jet actuators with large streamwise dimensions. AIAA J 51:2862–2877

    Article  Google Scholar 

  • Kordík J, Trávníček Z (2013b) Novel fluidic diode for hybrid synthetic jet actuator. J Fluids Eng-Trans ASME 135:101101-1–101101-7

    Article  Google Scholar 

  • Kral LD, Donovan JF, Cain AB, Cary AW (1997) Numerical simulation of synthetic jet actuators. AIAA Paper 97–1824

  • Lee CY, Goldstein DB (2002) Two-dimensional synthetic jet simulation. AIAA J 40:510–516

    Article  Google Scholar 

  • Lee A, Timchenko V, Yeoh GH, Reizes JA (2012a) Three-dimensional modelling of fluid flow and heat transfer in micro-channels with synthetic jet. Int J Heat Mass Transf 55:198–213 (Erratum (2012) in Int J Heat Mass Transf 55:2746 )

    Article  MATH  Google Scholar 

  • Lee A, Yeoh GH, Timchenko V, Reizes JA (2012b) Flow structure generated by two synthetic jets in a channel: effect of phase and frequency. Sens Actuator A-Phys 184:98–111

    Article  Google Scholar 

  • Mahalingam R, Rumigny N, Glezer A (2004) Thermal management using synthetic jet ejectors. IEEE Trans Compon Pack Technol 27:439–444

    Article  Google Scholar 

  • Mallinson SG, Reizes A, Hong G (2001) An experimental and numerical study of synthetic jet flow. Aeronaut J 105:41–49

    Google Scholar 

  • Martin ND, Bottomley M, Packwood A (2014) Switching of a bi-stable diverter valve with synthetic jet actuators. AIAA J 52:1563–1567

    Article  Google Scholar 

  • McGuinn A, Farrelly R, Persoons T, Murray DB (2013) Flow regime characterisation of an impinging axisymmetric synthetic jet. Exp Therm Fluid Sci 47:241–251

    Article  Google Scholar 

  • Mittal R, Rampunggoon P (2002) On the virtual aeroshaping effect of synthetic jets. Phys Fluids 14:1533–1536

    Article  Google Scholar 

  • Morris CJ, Forster FK (2003) Low-order modeling of resonance for fixed-valve micropumps based on first principles. J Microelectromech Syst 12:325–334

    Article  Google Scholar 

  • Pack LG, Seifert A (2001) Periodic excitation for jet vectoring and enhanced spreading. J Aircr 38:486–495

    Article  Google Scholar 

  • Persoons T (2012) General reduced-order model to design and operate synthetic jet actuators. AIAA J 50:916–927

    Article  Google Scholar 

  • Persoons T, McGuinn A, Murray DB (2011) A general correlation for the stagnation point Nusselt number of an axisymmetric impinging synthetic jet. Int J Heat Mass Transf 54:3900–3908

    Article  MATH  Google Scholar 

  • Priestman GH, Tippetts JR (1985) Factors affecting the application of vortex diodes and throttles. In: Proceedings of Symposium fluid control and measurement (FLUCOME), Pergamon, pp 241–246, Oxford

  • Qayoum A, Panigrahi PK (2015) Synthetic jet interaction with approaching turbulent boundary layer for heat transfer enhancement. Heat Transf Eng 36:352–367

    Article  Google Scholar 

  • Shuster JM, Smith DR (2007) Experimental study of the formation and scaling of a round synthetic jet. Phys Fluids 19:045109-1–045109-21

    Article  Google Scholar 

  • Smith BL, Glezer A (1998) The formation and evolution of synthetic jets. Phys Fluids 10:2281–2297

    Article  MATH  MathSciNet  Google Scholar 

  • Smith BL, Glezer A (2002) Jet vectoring using synthetic jets. J Fluid Mech 458:1–34

    Article  MATH  Google Scholar 

  • Smith BL, Swift GW (2003) A comparison between synthetic jets and continuous jets. Exp Fluids 34:467–472

    Article  Google Scholar 

  • Stemme E, Stemme G (1993) A valve-less diffuser/nozzle-based pump. Sens Actuator A-Phys 39:159–167

    Article  Google Scholar 

  • Tamburello DA, Amitay M (2007) Three-dimensional interactions of a free jet with a perpendicular synthetic jet. J Turbul 8:1–18

    Article  Google Scholar 

  • Tang H, Salunkhe P, Zheng YY, Du JX, Wu YH (2014) On the use of synthetic jet actuator arrays for active flow separation control. Exp Therm Fluid Sci 57:1–10

    Article  Google Scholar 

  • Tensi J, Boué I, Paillé F, Dury G (2002) Modification of the wake behind a circular cylinder by using synthetic jets. J Vis 5:37–44

    Article  Google Scholar 

  • Tesař V (2007) Pressure-driven microfluidics. Artech house integrated microsystems. Artech House Publishers, Boston

    Google Scholar 

  • Tesař V, Trávníček Z, Kordík J, Randa Z (2008) Experimental investigation of a fluidic actuator generating hybrid-synthetic jets. Sens Actuator A-Phys 138:213–220

    Google Scholar 

  • Timchenko V, Reizes J, Leonardi E, de Vahl Davis G (2004) A criterion for the formation of micro synthetic jets. In: Proceedings of IMECE04, IMECE2004-61374 260:197–203, New York

  • Timchenko V, Reizes JA, Leonardi E (2007) An evaluation of synthetic jets for heat transfer enhancement in air cooled micro-channels. Int J Numer Methods Heat Fluid Flow 17:263–283

    Article  Google Scholar 

  • Trávníček Z, Tesař V (2003) Annular synthetic jet used for impinging flow mass–transfer. Int J Heat Mass Transf 46:3291–3297

    Article  Google Scholar 

  • Trávníček Z, Fedorchenko AI, Wang A-B (2005a) Enhancement of synthetic jets by means of an integrated valve-less pump, Part I: design of the actuator. Sens Actuator A-Phys 120:232–240

    Article  Google Scholar 

  • Trávníček Z, Tesař V, Wang A-B (2005b) Enhancement of synthetic jets by means of an integrated valve-less pump, Part II: numerical and experimental studies. Sens Actuator A-Phys 125:50–58

    Article  Google Scholar 

  • Trávníček Z, Vít T, Tesař V (2006) Hybrid synthetic jet as the non-zero-net-mass-flux jet. Phys Fluids 18:081701-1–081701-4

    Google Scholar 

  • Trávníček Z, Tesař V, Kordík J (2008) Performance of synthetic jet actuators based on hybrid and double-acting principles. J Vis 11:221–229

    Article  Google Scholar 

  • Trávníček Z, Broučková Z, Kordík J (2012a) Formation criterion for axisymmetric synthetic jets at high Stokes numbers. AIAA J 50:2012–2017

    Article  Google Scholar 

  • Trávníček Z, Dančová P, Kordík J, Vít T, Pavelka M (2012b) Heat and mass transfer caused by a laminar channel flow equipped with a synthetic jet array. Trans ASME J Therm Sci Eng Appl 2:041006-1–041006-8

    Google Scholar 

  • Trávníček Z, Němcová L, Kordík J, Tesař V, Kopecký V (2012c) Axisymmetric impinging jet excited by a synthetic jet system. Int J Heat Mass Transf 55:1279–1290

    Article  Google Scholar 

  • Trávníček Z, Broučková Z, Kordík J (2014) Visualization of synthetic jet formation in air. J Vis (in review)

  • Valiorgue P, Persoons T, McGuinn A, Murray DB (2009) Heat transfer mechanisms in an impinging synthetic jet for a small jet-to-surface spacing. Exp Therm Fluid Sci 33:597–603

    Article  Google Scholar 

  • Xia Q, Zhong S (2012a) An experimental study on the behaviours of circular synthetic jets at low Reynolds numbers. Proc Inst Mech Eng Part C-J Eng Mech Eng Sci 226:2686–2700

    Article  Google Scholar 

  • Xia Q, Zhong S (2012b) A PLIF and PIV study of liquid mixing enhanced by a lateral synthetic jet pair. Int J Heat Fluid Flow 37:64–73

    Article  Google Scholar 

  • Yassour Y, Stricker J, Wolfshtein M (1986) Heat transfer from a small pulsating jet. In: Proceedings of 8th International Heat Transfer Conference 3:1183–1186, San Francisco

  • Yehoshua T, Seifert A (2006) Boundary condition effects on the evolution of a train of vortex pairs in still air. Aeronaut J 110:397–417

    Google Scholar 

  • Zhou J, Tang H, Zhong S (2009) Vortex roll-up criterion for synthetic jets. AIAA J 47:1252–1262

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the Grant Agency CR—the Czech Science Foundation (Project No. 14-08888S) and the institutional support RVO:61388998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Trávníček.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broučková, Z., Trávníček, Z. Visualization study of hybrid synthetic jets. J Vis 18, 581–593 (2015). https://doi.org/10.1007/s12650-014-0256-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-014-0256-8

Keywords

Navigation