Skip to main content
Log in

Visualization of 2D unsteady flow using streamline-based concepts in space-time

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Treating time as the third dimension of 2D time-dependent flow enables the application of a wide variety of visualization techniques for 3D stationary vector fields. In the resulting space-time representation, 3D streamlines represent 2D pathlines of the original field. In this paper, we investigate the application of different streamline-based visualization concepts to the 3D space-time representation of 2D time-dependent flow. As a consequence, we obtain from each streamline-based concept a Galilean-invariant counterpart that takes the time dependence of the original field explicitly into account. We show the advantages of the overall approach for vortex analysis and the analysis of the dynamics of material lines. In particular, we employ the concept for the extraction of vortex centers, vortex core regions, and the visualization of material line dynamics using streamsurface integration and line integral convolution in the space-time field. We exemplify the utility of our visualization approach using two 2D time-dependent datasets that exhibit vortical flow.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bachthaler S, Sadlo F, Dachsbacher C, Weiskopf D (2012) Space-time visualization of dynamics in Lagrangian coherent structures of time-dependent 2D vector fields. In: Proceedings of International Conference on Information Visualization Theory and Applications, pp 573–583

  • Cabral B, Leedom LC (1993) Imaging vector fields using line integral convolution. In: Proceedings of ACM SIGGRAPH Computer Graphics and Interactive Techniques, pp 263–270

  • Chen G, Mischaikow K, Laramee RS, Pilarczyk P, Zhang E (2007) Vector field editing and periodic orbit extraction using morse decomposition. IEEE Trans Vis Comput Graph 13(4):769–785

    Article  Google Scholar 

  • Eberly D (1996) Ridges in image and data analysis. Computational Imaging and Vision. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Esturo JM, Schulze M, Rössl C, Theisel H (2013) Global selection of stream surfaces. Comput Graph Forum 32(2):113–122

    Article  Google Scholar 

  • Fuchs R, Peikert R, Hauser H, Sadlo F, Muigg P (2008) Parallel vectors criteria for unsteady flow vortices. IEEE Trans Vis Comput Graph 14(3):615–626

    Article  Google Scholar 

  • Fuchs R, Peikert R, Sadlo F, Alsallakh B, Gröller ME (2008) Delocalized unsteady vortex region detectors. In: Proceedings of Vision, Modelling and Visualization, pp 81–90

  • Gamito MN, Maddock SC (2007) Ray casting implicit fractal surfaces with reduced affine arithmetic. Vis Comput 23(3):155–165

    Article  Google Scholar 

  • Haller G (2001) Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys D 149(4):248–277

    Article  MathSciNet  MATH  Google Scholar 

  • Hlawatsch M, Sadlo F, Hajun J, Weiskopf D (2014) Pathline glyphs. Comput Graph Forum 33(2):497–506

    Article  Google Scholar 

  • Hlawatsch M, Sadlo F, Weiskopf D (2011) Hierarchical line integration. IEEE Trans Vis Comput Graph 17(8):1148–1163

    Article  Google Scholar 

  • Hlawatsch M, Sadlo F, Weiskopf D (2013) Predictability-based adaptive mouse interaction and zooming for visual flow exploration. Int J Uncertain Quantif 3(3):225–240

    Article  MathSciNet  Google Scholar 

  • Hultquist JPM (1992) Constructing stream surfaces in steady 3D vector fields. In: Proceedings of IEEE Visualization, pp 171–178

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285(69):69–94

    Article  MathSciNet  MATH  Google Scholar 

  • Jobard B, Lefer W (1997) Creating evenly-spaced streamlines of arbitrary density. In: Visualization in Scientific Computing 97, Eurographics, pp 43–55

  • Karch GK, Sadlo F, Weiskopf D, Ertl T (2014) Streamline-based concepts for space-time analysis of 2D time-dependent flow. In: Proceedings of the 16th International Symposium on Flow Visualization

  • Kurzhals K, Weiskopf D (2013) Space-time visual analytics of eye-tracking data for dynamic stimuli. IEEE Trans Vis Comput Graph 12(19):2129–2138

    Article  Google Scholar 

  • Laramee RS, Hauser H, Doleisch H, Vrolijk B, Post FH, Weiskopf D (2004) The state of the art in flow visualization: Dense and texture-based techniques. Comput Graph Forum 23(2):203–221

    Article  Google Scholar 

  • Levy Y, Degani D, Seginer A (1990) Graphical visualization of vortical flows by means of helicity. AIAA 28(8):1347–1352

    Article  Google Scholar 

  • Machado G, Sadlo F, Ertl T (2013) Local extraction of bifurcation lines. In: Proceedings of Vision, Modelling and Visualization, pp 9–16

  • Mattausch O, Theußl T, Hauser H, Gröller E (2003) Strategies for interactive exploration of 3D flow using evenly-spaced illuminated streamlines. In: Proceedings of 19th Spring Conference on Computer Graphics, pp 213–222

  • McLoughlin T, Jones M, Laramee R, Malki R, Masters I, Hansen C (2013) Similarity measures for enhancing interactive streamline seeding. IEEE Trans Vis Comput Graph 19(8):1342–1353

    Article  Google Scholar 

  • Pagot C, Osmari D, Sadlo F, Weiskopf D, Ertl T, Comba J (2011) Efficient parallel vectors feature extraction from higher-order data. Comput Graph Forum 30(3):751–760

    Article  Google Scholar 

  • Peikert R, Roth M (1999) The ‘parallel vectors’ operator - a vector field visualization primitive. In: Proceedings of IEEE Visualization, pp 263–270

  • Perry AE, Chong MS (1987) A description of eddying motions and flow patterns using critical-point concepts. Ann Rev Fluid Mech 19:125–155

    Article  Google Scholar 

  • Roth M (2000) Automatic extraction of vortex core lines and other line-type features for scientific visualization. Ph.D. thesis, ETH Zurich, No. 13673

  • Sadlo F, Peikert R, Parkinson E (2004) Vorticity based flow analysis and visualization for Pelton turbine design optimization. In: Proceedings of IEEE Visualization, pp 179–186

  • Sadlo F, Weiskopf D (2010) Time-dependent 2-D vector field topology: an approach inspired by Lagrangian coherent structures. Comput Graph Forum 29(1):88–100

    Article  Google Scholar 

  • Sahner J, Weinkauf T, Hege HC (2005) Galilean invariant extraction and iconic representation of vortex core lines. In: Proceedings of Eurographics/IEEE VGTC Symposium on Visualization, pp 151–160

  • Schafhitzel T, Vollrath JE, Gois JP, Weiskopf D, Castelo A, Ertl T (2008) Topology-preserving lambda\({}_{\rm 2}\)-based vortex core line detection for flow visualization. Comput Graph Forum 27(3):1023–1030

    Article  Google Scholar 

  • Sujudi D, Haimes R (1995) Identification of swirling flow in 3D vector fields. In: Proceedings of 12th AIAA Computational Fluid Dynamics Conference, pp 95–1715

  • Theisel H, Seidel HP (2003) Feature flow fields. In: Proceedings of Eurographics/IEEE VGTC Symposium on Visualization, pp 141–148

  • Theisel H, Weinkauf T, Hege HC, Seidel HP (2004) Stream line and path line oriented topology for 2D time-dependent vector fields. In: Proceedings of IEEE Visualization, pp 321–328

  • Turk G, Banks D (1996) Image-guided streamline placement. In: Proceedings of ACM SIGGRAPH Computer Graphics and Interactive Techniques, pp 453–460

  • Ueng SK, Sikorski C, Ma KL (1996) Efficient streamline, streamribbon, and streamtube constructions on unstructured grids. IEEE Trans Vis Comput Graph 2(2):100–110

    Article  Google Scholar 

  • Üffinger M, Sadlo F, Ertl T (2013) A time-dependent vector field topology based on streak surfaces. IEEE Trans Vis Comput Graph 19(3):379–392

    Article  Google Scholar 

  • Weinkauf T, Sahner J, Theisel H, Hege HC (2007) Cores of swirling particle motion in unsteady flows. IEEE Trans Vis Comput Graph 13(6):1759–1766

    Article  Google Scholar 

  • Weinkauf T, Theisel H, Sorkine O (2012) Cusps of characteristic curves and intersection-aware visualization of path and streak lines. In: Topological Methods in Data Analysis and Visualization II, Mathematics and Visualization. Springer, pp 161–176

  • Wiebel A, Tricoche X, Schneider D, Jänicke H, Scheuermann G (2007) Generalized streak lines: Analysis and visualization of boundary induced vortices. IEEE Trans Vis Comput Graph 13(6):1735–1742

    Article  Google Scholar 

  • Ye X, Kao D, Pang A (2005) Strategy for scalable seeding of 3D streamlines. In: Proceedings of IEEE Visualization, pp 471–478

Download references

Acknowledgments

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) and the Collaborative Research Centre SFB-TRR 75 at the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz K. Karch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karch, G.K., Sadlo, F., Weiskopf, D. et al. Visualization of 2D unsteady flow using streamline-based concepts in space-time. J Vis 19, 115–128 (2016). https://doi.org/10.1007/s12650-015-0284-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-015-0284-z

Keywords

Mathematics Subject Classification

Navigation