Skip to main content
Log in

Interactive visualization of magnetic field for virtual science experiments

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

This paper presents a novel application of visualizing 3D magnetic field for virtual science experiments. The magnetic field is visualized as streamlines using view-dependent seed template and occlusion buffer. The template is updated according to the viewpoint/magnet movements and determines 3D seed positions. The occlusion buffer enables us to select a subset of the seeds which do not cause cluttered streamlines. Our method has been designed and implemented through teacher survey. A virtual experiment system is built upon the visualization method. It supports user interactions with magnets and compasses and visualizes the magnetic field at real time. The system was experimented in elementary school science classes. The evaluation results show that our method significantly improved the students’ capabilities of presenting magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Algodoo (2014) Algodoo. http://www.algodoo.com/

  • Avison JH (1999) Physics for CXC. Nelson Thornes Limited, URL http://books.google.co.kr/books?id=oCtw-LWBdP4C

  • Bachthaler S, Sadlo F, Weeber R, Kantorovich S, Holm C, Weiskopf D (2012) Magnetic flux topology of 2d point dipoles. Comput Graph Forum 31(3pt1):955–964

    Article  Google Scholar 

  • eduMedia (2013) eduMedia. http://www.edumedia-sciences.com/

  • ExploreLearning (2014) ExploreLearning. http://www.explorelearning.com/

  • Günther T, Rössl C, Theisel H (2013) Opacity optimization for 3D line fields. ACM Trans Graph 32(4):120:1–120:8

  • Hafner M, Schöning M, Antczak M, Demenko A, Hameyer K (2010) Methods for computation and visualization of magnetic flux lines in 3-d. IEEE Trans Magn 46(8):3349–3352

    Article  Google Scholar 

  • Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York. http://cdsweb.cern.ch/record/490457

  • Klein T, Ertl T (2004) Illustrating magnetic field lines using a discrete particle model. In: VMV’04, pp 387–394

  • Li L, Shen HW (2007) Image-based streamline generation and rendering. IEEE Trans Vis Comput Graph 13(3):630–640

    Article  Google Scholar 

  • Marchesin S, Chen CK, Ho C, Ma KL (2010) View-dependent streamlines for 3d vector fields. IEEE Trans Vis Comput Graph 16(6):1578–1586

    Article  Google Scholar 

  • Mattausch O, Theul T, Hauser H, Grller E (2003) Strategies for interactive exploration of 3D flow using evenly-spaced illuminated streamlines. In: Proceedings of the 19th spring conference on Computer graphics, ACM, New York, NY, USA, SCCG ’03, pp 213–222

  • McLoughlin T, Laramee RS, Peikert R, Post FH, Chen M (2010) Over two decades of integration-based, geometric flow visualization. Comput Graph Forum 29(6):1807–1829

    Article  Google Scholar 

  • NHMFL (2013) National High Magnetic Field Laboratory. http://www.magnet.fsu.edu/education/tutorials/java

  • NTNUJAVA (2014) NTNUJAVA Virtual Physics Laboratory. http://www.phy.ntnu.edu.tw/ntnujava/

  • Okayama E, Cingoski V, Noguchi S, Kaneda K, Yamashita H (2000) Interactive visualization system for education and design in electromagnetics. IEEE Trans Magn 36(4):995–999

    Article  Google Scholar 

  • Online Labs (2014) Online Labs. http://www.olabs.co.in/

  • PhET (2013) PhET. http://phet.colorado.edu/

  • Physion (2014) Physion. http://physion.net/

  • Post FH, Vrolijk B, Hauser H, Laramee RS, Doleisch H (2003) The state of the art in flow visualisation: Feature extraction and tracking. Comput Graph Forum 22(4):775–792

    Article  Google Scholar 

  • Rutten N, van Joolingen WR, van der Veen JT (2012) The learning effects of computer simulations in science education. Comput Educ 58(1):136–153

    Article  Google Scholar 

  • Sundquist A (2003) Dynamic line integral convolution for visualizing streamline evolution. IEEE Trans Vis Comput Graph 9(3):273–282

    Article  Google Scholar 

  • TEAL (2014) TEAL. http://web.mit.edu/edtech/casestudies/teal.html/

  • Thomaszewski B, Gumann A, Pabst S, Straßer W (2008) Magnets in motion. ACM Trans Graph 27(5):162:1–162:9

  • Trlep M, Hamler A, Jesenik M, Stumberger B (2006) Interactive teaching of electromagnetic field by simultaneous FEM analysis. IEEE Trans Magn 42(4):1479–1482

    Article  Google Scholar 

  • Unity (2013) Unity. http://unity3d.com/

  • Verma V, Kao D, Pang A (2000) A flow-guided streamline seeding strategy. In: Proceedings Visualization 2000. pp 163–170

  • Yamashita H, Johkoh T, Nakamae E (1992) Interactive visualization of interaction between magnetic flux density and eddy currents in a 3D steady state field. IEEE Trans Magn 28(2):1778–1781

    Article  Google Scholar 

  • Ye X, Kao D, Pang A (2005) Strategy for seeding 3D streamlines. In: IEEE Visualization, 2005. VIS 05, pp 471–478

Download references

Acknowledgments

This research is supported by Ministry of Culture, Sports and Tourism (MCST) and Korea Creative Content Agency (KOCCA) in the Culture Technology (CT) Research & Development Program 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JungHyun Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Lee, K. & Han, J. Interactive visualization of magnetic field for virtual science experiments. J Vis 19, 129–139 (2016). https://doi.org/10.1007/s12650-015-0300-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-015-0300-3

Keywords

Navigation