Skip to main content
Log in

Numerical visualization of shock tube-generated vortex–wall interaction using a fifth-order upwind scheme

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Compressible Navier–Stokes equations are solved using a fifth-order upwind scheme in the AUSM+ framework to visualize a compressible vortex ring generated from a shock tube. The ring impinges on a wall kept near the open end of the tube. The vortex ring has an embedded shock, counter rotating vortex rings ahead of it and a number of small-scale shear layer vortices trailing behind. When this complex configuration impinges on a wall, wall vorticity is lifted and begins to interact with the complex system of vortices. The paper focusses on the features of the resulting flow field by visualizing them on increasingly finer grids. It is shown that though the different grids capture a fairly matching description of the initial turbulent vortex system that propagates towards the wall, small differences existing between them magnify with time. During vortex–wall interaction, some key experimentally observed features are identified on all the grids, but the details of the vortical structure look significantly different on different grids.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Arakeri JH, Das D, Krothapalli A, Lourenco L (2004) Vortex ring formation at the open end of a shock tube: a particle image velocimetry study. Phys Fluids 16(4):1008–1019

    Article  MATH  Google Scholar 

  • Brouillette M, Hébert C (1997) Propagation and interaction of shock-generated vortices. Fluid Dyn Res 21:159–169

    Article  Google Scholar 

  • Calvo M, Franco JM, Rández L (2004) A new minimum storage Runge–kutta scheme for computational acoustics. J Comput Phys 201:1–12

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Z, Yi SH, Tian LF, He L, Zhu YZ (2013) Flow visualization of supersonic laminar flow over a backward-facing step via NPLS. Shock Waves 23:299–306

    Article  Google Scholar 

  • Drikakis D (2003) Advances in turbulent flow computations using high-resolution methods. Prog Aerosp Sci 39:405–424

    Article  Google Scholar 

  • Fiorina B, Lele SK (2007) An artificial nonlinear diffusivity method for supersonic reacting flows with shocks. J Comput Phys 222:246–264

    Article  MathSciNet  MATH  Google Scholar 

  • Hahn M, Drikakis D (2005) Large eddy simulation of compressible turbulence using high-resolution methods. Int J Numer Meth Fluids 47:971–977

    Article  MATH  Google Scholar 

  • Halder P, De S, Sinhamahapatra KP, Singh N (2013) Numerical simulation of shock-vortex interaction in Schardin’s problem. Shock Waves 23:495–504

    Article  Google Scholar 

  • Kim KH, Kim C (2005) Accurate, efficient and monotonic methods for multi-dimensional compressible flows part II: multi-dimensional limiting process. J Comput Phys 208:570–615

    Article  MATH  Google Scholar 

  • Kontis K, An R, Zare-Behtash H, Kounadis D (2008) Head-on collision of shock wave induced vortices with solid and perforated walls. Phys Fluids 20(016104):1–17

    MATH  Google Scholar 

  • Liou MS (1996) A sequel to AUSM: AUSM+. J Comput Phys 129:364–382

    Article  MathSciNet  MATH  Google Scholar 

  • Mariani R, Kontis K, Gongora-Orozco N (2013) Head on collisions of compressible vortex rings on a smooth solid surface. Shock Waves 23:381–398

    Article  Google Scholar 

  • Minota T, Nishida M, Lee MG (1997) Shock formation by compressible vortex ring impinging on a wall. Fluid Dyn Res 21:1–17

    Article  Google Scholar 

  • Murugan T, Das D (2012) Experimental study on a compressible vortex ring in collision with a wall. J Vis 15:321–332

    Article  Google Scholar 

  • Murugan T, De S, Dora CL, Das D (2011) Numerical simulation and PIV study of compressible vortex ring evolution. Shock Waves 22:69–83

    Article  Google Scholar 

  • Murugan T, De S, Dora CL, Das D, Kumar PP (2013) A study of the counter-rotating vortex rings interacting with the primary vortex ring in shock tube generated flows. Fluid Dyn Res 45:1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Murugan T, De S, Sreevatsa A, Dutta S (2016) Numerical simulation of a compressible vortex-wall interaction. Shock Waves. doi:10.1007i/s00193-015-0611-2

  • Poinsot TJ, Lele SK (1992) Boundary conditions for direct simulations of compressible viscous flows. J Comput Phys 101:104–129

    Article  MathSciNet  MATH  Google Scholar 

  • San O, Kara K (2015) Evaluation of riemann flux solvers for weno reconstruction schemes: Kelvin–helmholtz instability. Comput Fluids 117:24–41

    Article  MathSciNet  Google Scholar 

  • Sun M, Takayama K (2003) A note on numerical simulation of vortical structures in shock diffraction. Shock Waves 13:25–32

    Article  MATH  Google Scholar 

  • Tao Y, Fan X, Zhao Y (2015) Flow visualization for the evolution of the slipstream in steady shock reflection. J Vis 18:21–24

    Article  Google Scholar 

  • Thornber B, Mosedale A, Drikakis D (2007) On the implicit large eddy simulations of homogeneous decaying turbulence. J Comput Phys 226:1902–1929

    Article  MATH  Google Scholar 

  • Zare-Behtash H, Gongora-Orozco N, Kontis K (2009) Global visualization and quantification of compressible vortex loops. J Vis 12(3):233–240

    Article  MATH  Google Scholar 

  • Zare-Behtash H, Kontis K, Gongora-Orozco N, Takayama K (2010) Shock-wave induced vortex loops emanating from nozzles with singular corners. Shock Waves 49:1005–1019

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge their access to the High-Performance Computing Facility of CSIR-CMERI. In particular, the authors are immensely indebted to Mr. Anupam Sinha, of the Aerosystems Laboratory of the Institute, who has skilfully developed and maintained this facility. We also acknowledge the efforts of Dr. Sarita Ghosh, of the Printing and Publication department, CSIR-CMERI in creating the first figure on experimental comparison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta De.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, A., De, S., Thangadurai, M. et al. Numerical visualization of shock tube-generated vortex–wall interaction using a fifth-order upwind scheme. J Vis 19, 667–678 (2016). https://doi.org/10.1007/s12650-016-0362-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-016-0362-x

Keywords

Navigation