Skip to main content
Log in

An improved diversity visualization system for multivariate data

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Exploring and analyzing data is becoming increasingly difficult due to the growth of data. Visual analytics tools can be an attractive solution to support the process to derive insights from data. Currently, there are many visual representation methods to visualize the diversity in multivariate data sets. However, most of these applications focus on visual representation problems, and these solutions support limited interactive components for users to effectively explore and analyze data on screen. In this paper, the adaptive diversity table (ADT) is proposed to solve the visual representation problems (occlusion and technique interference). Furthermore, it integrates the mantra techniques to support users to accomplish seven important tasks (i.e. overview, zoom, filter, details-on-demand, relate, history, and extract) that are useful for high dimensional data exploration and data analysis. Experimental results show that the proposed ADT is a better visual representation as compared to other prior techniques. Majority of the respondents prefers to use the proposed ADT over the other visual representation methods. User studies also show that the proposed ADT is more useful as it enables the respondents to be more efficient in analyzing the data sets provided.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alan JK (1975) Pielou, E. C. 1975. Ecological diversity. John Wiley & Sons, New York, viii + 165 p. $14.95. Limnol Oceanogr 22(1):174. doi:10.4319/lo.1977.22.1.0174b

  • Alexander Dr Ulrike, Spree F, Maria Brunetti J, Garcia R (2014) User-centered design and evaluation of overview components for semantic data exploration. Aslib J Inf Manag 66(5):519–536

    Article  Google Scholar 

  • Baudisch P, Good N, Stewart P (2001) Focus plus context screens: combining display technology with visualization techniques. In: Proceedings of the 14th annual ACM symposium on User interface software and technology, pp 31–40

  • Bendi F, Kosara R, Hauser H (2005) Parallel sets: visual analysis of categorical data. In: IEEE symposium on information visualization (INFOVIS), pp 133–140

  • Beyer J, Hadwiger M, Al-Awami A, Jeong WK, Kasthuri N, Lichtman JW, Pfister H (2013) Exploring the connectome: petascale volume visualization of microscopy data streams. IEEE Comput Graph Appl 33(4):50–61

    Article  Google Scholar 

  • Birinci M, Kiranyaz S (2014) A perceptual scheme for fully automatic video shot boundary detection. Signal Process Image Commun 29(3):410–423

    Article  Google Scholar 

  • Brito PQ, Soares C, Almeida S, Monte A, Byvoet M (2015) Customer segmentation in a large database of an online customized fashion business. J Robot Comput Integr Manuf 36(C):93–100

  • Castellanos-Garzn JA, Garca CA, Novais P, Daz F (2013) A visual analytics framework for cluster analysis of dna microarray data. Expert Syst Appl 40(2):758–774

    Article  Google Scholar 

  • Chen W, Guo F, Wang FY (2015) A survey of traffic data visualization. Intell Transp Syst IEEE Trans 16(6):2970–2984

    Article  Google Scholar 

  • Choo J, Park H (2013) Customizing computational methods for visual analytics with big data. IEEE Comput Graph Appl 33(4):22–28

    Article  Google Scholar 

  • Congress U (1987) Technologies to maintain biological diversity. Office of Technology Assessment, Washington, DC

    Google Scholar 

  • Conover WJ, Iman RL (1981) Rank transformations as a bridge between parametric and nonparametric statistics. Am Stat 35(3):124–129

    MATH  Google Scholar 

  • Costabile MF, Semeraro G (1998) Information visualization in the interaction with idl. In: ERCIM, pp 73

  • Garca-Borroto M, Martnez-Trinidad JF, Carrasco-Ochoa JA (2015) Finding the best diversity generation procedures for mining contrast patterns. Expert Syst Appl 42(11):4859–4866

    Article  Google Scholar 

  • Harrower M, Brewer CA (2003) Colorbrewer. org: an online tool for selecting colour schemes for maps. Cartogr J 40(1):27–37

    Article  Google Scholar 

  • Heip C (1974) A new index measuring evenness. J Mar Biol Assoc UK 54(03):555–557

    Article  Google Scholar 

  • Janicki J, Guo C, Conway M, Donohue R, Roth RE (2014) Weevil viewer: an interactive mapping application for geographic and phenological exploration of wisconsin’s primitive weevils. J Maps 10(2):289–296

    Article  Google Scholar 

  • Keim D (2002) Information visualization and visual data mining. IEEE Trans Vis Comput Graph 8(1):1–8

    Article  MathSciNet  Google Scholar 

  • Keim D, Andrienko G, daniel Fekete J, Kohlhammer J, Cedex FO (2008) Visual analytics: definition, process, and challenges. In: Information visualization: human-centered issues and perspectives, pp 154–175

  • Kidwell P, Lebanon G, Cleveland WS (2008) Visualizing incomplete and partially ranked data. IEEE Trans Vis Comput Graph 14(6):1356–1363

    Article  Google Scholar 

  • Ko S, Maciejewski R, Jang Y, Ebert DS (2012) Marketanalyzer: an interactive visual analytics system for analyzing competitive advantage using point of sale data. Comput Graph Forum 31(3pt3):1245–1254

  • Kwon O, Sim JM (2013) Effects of data set features on the performances of classification algorithms. Expert Syst Appl 40(5):1847–1857

    Article  Google Scholar 

  • Lee TY, Tong X, Shen HW, Wong PC, Hagos S, Leung LR (2013) Feature tracking and visualization of the madden-julian oscillation in climate simulation. IEEE Comput Graph Appl 33(4):29–37

    Article  Google Scholar 

  • Liao Sh, Yj Chen, Yt Lin (2011) Mining customer knowledge to implement online shopping and home delivery for hypermarkets. Expert Syst Appl 38(4):3982–3991

    Article  Google Scholar 

  • Liao Sh, Chu Ph, Yj Chen, Chang CC (2012) Mining customer knowledge for exploring online group buying behavior. Expert Syst Appl 39(3):3708–3716

    Article  Google Scholar 

  • Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml

  • Liu S, Cui W, Wu Y, Liu M (2014) A survey on information visualization: recent advances and challenges. Vis Comput 30(12):1373–1393

    Article  Google Scholar 

  • Maletic J, Leigh J, Marcus A, Dunlap G, et al (2001) Visualizing object-oriented software in virtual reality. In: Proceedings of the 9th international workshop on program comprehension (IWPC), pp 26–35

  • Newman DJ, Hettich S, Blake CL, Merz CJ (1998) Uci repository of machine learning databases. Department of Information and Computer Sciences, University of California, Irvine. http://www.ics.uci.edu/~mlearn/MLRepository.html

  • Pearlman J, Rheingans P, Des Jardins M (2007) Visualizing diversity and depth over a set of objects. IEEE Comput Graph Appl 27(5):35–45

    Article  Google Scholar 

  • Pham T, Hess R, Ju C, Zhang E, Metoyer R (2010) Visualization of diversity in large multivariate data sets. IEEE Trans Vis Comput Graph 16(6):1053–1062

    Article  Google Scholar 

  • Pham T, Jones J, Metoyer R, Swanson F, Pabst R (2013) Interactive visual analysis promotes exploration of long-term ecological data. Ecosphere 4(9):112

    Article  Google Scholar 

  • Podowski RM, Miller B, Wasserman WW (2006) Visualization of complementary systems biology data with parallel heatmaps. IBM J Res Dev 50(6):575–581

    Article  Google Scholar 

  • Reda K, Febretti A, Knoll A, Aurisano J, Leigh J, Johnson A, Papka ME, Hereld M (2013) Visualizing large, heterogeneous data in hybrid-reality environments. IEEE Comput Graph Appl 4:38–48

    Article  Google Scholar 

  • Rhyne T, Chen M (2013) Cutting-edge research in visualization. Computer 46(5):22–24

    Article  Google Scholar 

  • Roth RE, MacEachren AM (2016) Geovisual analytics and the science of interaction: an empirical interaction study. Cartogr Geogr Inf Sci 43(1):30–54. doi:10.1080/15230406.2015.1021714

    Article  Google Scholar 

  • Seo J, Shneiderman B (2004) A rank-by-feature framework for unsupervised multidimensional data exploration using low dimensional projections. In: IEEE symposium on information visualization (INFOVIS), pp 65–72

  • Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the IEEE symposium on visual languages, pp 336–343

  • Tory M, Potts S, Möller T (2005) A parallel coordinates style interface for exploratory volume visualization. IEEE Trans Vis Comput Graph 11(1):71–80

    Article  Google Scholar 

  • Whittaker RH (1965) Dominance and diversity in land plant communities numerical relations of species express the importance of competition in community function and evolution. Science 147(3655):250–260

    Article  Google Scholar 

  • Woniak M, Graa M, Corchado E (2014) A survey of multiple classifier systems as hybrid systems. Inf Fusion 16:3–17

    Article  Google Scholar 

  • Yang F, Li X, Li Q, Li T (2014) Exploring the diversity in cluster ensemble generation: random sampling and random projection. Expert Syst Appl 41(10):4844–4866

    Article  Google Scholar 

  • Zeileis A, Hornik K, Murrell P (2009) Escaping rgbland: selecting colors for statistical graphics. Comput Stat Data Anal 53(9):3259–3270

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmerman DW, Zumbo BD (1993) Rank transformations and the power of the student t test and welch t’test for non-normal populations with unequal variances. Can J Exp Psychol/Revue canadienne de psychologie expérimentale 47(3):523

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Research Grants (project number RG053-11ICT, RG102-12ICT) from the University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mee Chin Wee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 13987 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wee, M.C. An improved diversity visualization system for multivariate data. J Vis 20, 163–179 (2017). https://doi.org/10.1007/s12650-016-0380-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-016-0380-8

Keywords

Navigation