Skip to main content
Log in

Flow in an intracranial aneurysm model: effect of parent artery orientation

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Flow in an artery with an intracranial saccular aneurysm is investigated under steady and pulsatile flow conditions. Experiments have been carried out using a PIV system that images the instantaneous flow distribution over a selected plane cutting through the bulge. Simulations of the 3D Navier–Stokes equations have been carried out using a finite-volume method. Three models (M1–M3) resembling diseased portions of intracranial aneurysm are considered. These differ in the manner in which the connecting inlet artery is oriented with respect to the bulge. In experiments, a blood mimicking fluid is circulated through the model and dynamic similarity with simulation is achieved under physiological conditions (Re = 426 and Wo = 4.7). Experimental data are reported on the medial plane and compared against the numerical solution. The three-dimensional flow field is mapped in detail by examining the numerically generated data. The present study reveals distinct flow patterns within the aneurysm at varying orientations of the inlet parent artery. Depending on its orientation, flow may impinge on the distal neck before entering the aneurysm, mix with the primary recirculation pattern, or may entirely bypass it. These flow patterns significantly influence pressure and wall shear stress, and have a bearing on the deformation and aging of the biological tissue. In the three configurations, flow within the bulge reveals a persistent three-dimensional vortex, whose core shifts spatially during the pulsatile cycle. The vortex has a primary component on the medial plane that drives secondary flow on an orthogonal plane within the aneurysmal sac. A vertical cross plane reveals contra-rotating circulation patterns nestled in the neck region that strengthens during the pulsatile cycle, while horizontal planes above the connecting arteries show stagnant secondary flow structures. Vortex strength, measured using the Q-criterion, increases from model M1 to M3 and changes with the phase of the flow rate waveform. Wall shear stress (WSS) and wall pressure are high in regions of flow impingement and WSS is low within the aneurysm, thus generating a region of wall shear stress gradient. Variations in WSS and pressure are shown to be sensitive to the orientation of the inlet parent artery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Brisman JL, Eskridge JM, Newell DW (2006) Neurointerventional treatment of vasospasm. Neurol Res 28(7):769–776

    Article  Google Scholar 

  • Castro MA, Putman CM, Cebral JR (2006) Effects of parent vessel geometry on intraaneurysmal flow patterns. In: Medical imaging. International Society for Optics and Photonics, pp 61430E–61430E

  • Castro MA, Putman CM, Cebral JR (2006b) Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. Am J Neuroradiol 27(8):1703–1709

    Google Scholar 

  • Castro MA, Putman CM, Cebral JR (2006c) Patient-specific computational fluid dynamics modeling of anterior communicating artery aneurysms: a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries. Am J Neuroradiol 27(10):2061–2068

    Google Scholar 

  • Castro MA, Putman CM, Cebral JR (2006d) Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images. Acad Radiol 13(7):811–821

    Article  Google Scholar 

  • Cebral JR, Hernandez M, Frangi AF, Putman CM, Pergolizzi R, Burgess JE (2004) Subject-specific modeling of intracranial aneurysms. In: Proceedings of SPIE Medical Imaging, vol 5369, pp 319–327

  • Cebral JR, Sheridan M, Putman CM (2010) Hemodynamics and bleb formation in intracranial aneurysms. Am J Neuroradiol 31(2):304–310

    Article  Google Scholar 

  • Cebral JR, Mut F, Weir J, Putman C (2011) Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. Am J Neuroradiol 32:145–151

    Article  Google Scholar 

  • Cebral J, Ollikainen E, Chung BJ, Mut F, Sippola V, Jahromi BR, Tulamo R, Hernesniemi J, Niemelä M, Robertson A, Frösen J (2017) Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall. Am J Neuroradiol 38(1):119–126

    Article  Google Scholar 

  • Cecchi E, Giglioli C, Valente S, Lazzeri C, Gensini GF, Abbate R, Mannini L (2011) Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis 214(2):249–256

    Article  Google Scholar 

  • Chandran KB, Yearwood TL (1981) Experimental study of physiological pulsatile flow in a curved tube. J Fluid Mech 111:59–85

    Article  Google Scholar 

  • Chatziprodromou I, Tricoli A, Poulikakos D, Ventikos Y (2007) Hemodynamics and wall remodelling of a growing cerebral aneurysm: a computational model. J Biomech 40(2):412–426

    Article  Google Scholar 

  • Crompton MR (1966) Mechanism of growth and rupture in cerebral berry aneurysms. BMJ 1(5496):1138

    Article  Google Scholar 

  • Dhar S, Tremmel M, Mocco J, Kim M, Yamamoto J, Siddiqui AH, Hopkins LN, Meng H (2008) Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63(2):185

    Article  Google Scholar 

  • Duncan DD, Bargeron CB, Borchardt SE, Deters OJ, Gearhart SA, Mark FF, Friedman MH (1990) The effect of compliance on wall shear in casts of a human aortic bifurcation. J Biomech Eng 112(2):183–188

    Article  Google Scholar 

  • Dutta S, Panigrahi PK, Muralidhar K (2008) Experimental investigation of flow past a square cylinder at an angle of incidence. J Eng Mech 134(9):788–803

    Article  Google Scholar 

  • Einstein GA, Aishwarya S, Sreeja V, Nandhini S (2018) Computational fluid dynamics for intracranial aneurysm rupture prediction and post-treatment hemodynamic analysis. In: Computer methods in biomechanics and biomedical engineering, pp 1–10

  • Ethier CR, Simmons CA (2007) Introductory biomechanics: from cells to organisms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ford MD, Nikolov HN, Milner JS, Lownie SP, DeMont EM, Kalata W, Loth F, Holdsworth DW, Steinman DA (2008) PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J Biomech Eng 130(2):021015

    Article  Google Scholar 

  • Foutrakis GN, Yonas H, Sclabassi RJ (1999) Saccular aneurysm formation in curved and bifurcating arteries. Am J Neuroradiol 20(7):1309–1317

    Google Scholar 

  • Fukuda S, Hashimoto N, Naritomi H, Nagata I, Nozaki K et al (2000) Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase. Circulation 101:2532–2538

    Article  Google Scholar 

  • Gobin YP, Counord JL, Flaud P, Duffaux J (1994) In vitro study of haemodynamics in a giant saccular aneurysm model: influence of flow dynamics in the parent vessel and effects of coil embolisation. Neuroradiology 36(7):530–536

    Article  Google Scholar 

  • Gohil TB, McGregor R, Szczerba D, Burckhardt K, Muralidhar K, Szekely G (2012) Simulation of oscillatory flow in an aortic bifurcation using FVM and FEM: a comparative study. Int J Numer Methods Fluids 66(8):1037–1067

    Article  MathSciNet  MATH  Google Scholar 

  • Gonzalez CF, Cho YI, Ortega HV, Moret J (1992) Intracranial aneurysms: flow analysis of their origin and progression. Am J Neuroradiol 13(1):181–188

    Google Scholar 

  • Griffith TM (1994) Modulation of blood flow and tissue perfusion by endothelium-derived relaxing factor. Exp Physiol 79(6):873–913

    Article  Google Scholar 

  • Guzman RJ, Abe K, Zarins CK (1997) Flow-induced arterial enlargement is inhibited by suppression of nitric oxide synthase activity in vivo. Surgery 122(2):273–280

    Article  Google Scholar 

  • Hassan T, Ezura M, Timofeev EV, Tominaga T, Saito T, Takahashi A, Takayama K, Yoshimoto T (2004) Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm. Am J Neuroradiol 25(1):63–68

    Google Scholar 

  • Humphrey JD (2009) Coupling hemodynamics with vascular wall mechanics and mechanobiology to understand intracranial aneurysms. Int J Comput Fluid Dyn 23(8):569–581

    Article  MATH  Google Scholar 

  • Inci S, Spetzler RF (2000) Intracranial aneurysms and arterial hypertension: a review and hypothesis. Surg Neurol 53(6):530–542

    Article  Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang J, Strother C (2009) Computational fluid dynamics simulations of intracranial aneurysms at varying heart rates: a “patient-specific” study. J Biomech Eng 131(9):091001

    Article  Google Scholar 

  • Karmonik C, Arat A, Benndorf G, Akpek S, Klucznik R, Mawad ME et al (2004) A technique for improved quantitative characterization of intracranial aneurysms. Am J Neuroradiol 25:1158–1161

    Google Scholar 

  • Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49(3):191–215

    Article  Google Scholar 

  • Lai SSM, Tang AYS, Tsang ACO, Leung GKK, Yu ACH, Chow KW (2016) A joint computational-experimental study of intracranial aneurysms: importance of the aspect ratio. J Hydrodyn Ser B 28(3):462–472

    Article  Google Scholar 

  • Levesque MJ, Cornhill JF (1981) Vascular endothelial morphology as an indicator of the pattern of blood flow. J Biomech Eng 103:173

    Google Scholar 

  • Liepsch DW (1986) Flow in tubes and arteries—a comparison. Biorheology 23(4):395–433

    Article  Google Scholar 

  • Liou TM, Liao CC (1997) Study of pulsatile flows in lateral aneurysm models on a straight parent vessel using particle tracking velocimetry. 1st Pacific symposium on flow visualization and image processing, vol 3, pp 207–223

  • Liou TM, Chang TW, Chang WC (1994) Pulsatile flow through a bifurcation with a cerebrovascular aneurysm. ASME J Biomech Eng 116:112–118

    Article  Google Scholar 

  • Liou TM, Liao CC, Juan WC (1995) PIV and visualization study of flow fields in lateral model aneurysm. In: Proceedings of annual symposium of the biomedical engineering society, Taipei, Taiwan, R.O.C

  • Liou TM, Chang WC, Liao CC (1997) LDV measurements in lateral model aneurysms of various sizes. Exp Fluids 23:317–324

    Article  Google Scholar 

  • Liou TM, Li YC, Juan WC (2007) Numerical and experimental studies on pulsatile flow in aneurysms arising laterally from a curved parent vessel at various angles. J Biomech 40(6):1268–1275

    Article  Google Scholar 

  • Massound TF, Guglielmi G, Ji C, Vieula F, Duckwiler GR (1994) Experimental saccular aneurysms I. Review of surgically constructed models and their laboratory applications. Neuroradilolgy 36:537–546

    Article  Google Scholar 

  • Matsumoto K, Akagi K, Abekura M, Nakajima Y, Yoshiminie T (2003) Investigation of the surgically treated and untreated unruptured cerebral aneurysms of the anterior circulation. Surg Neurol 60:516–523

    Article  Google Scholar 

  • Meng H, Wang Z, Hoi Y, Gao L, Metaxa E, Swartz DD, Kolega J (2007) Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38(6):1924–1931

    Article  Google Scholar 

  • Meng H, Tutino VM, Xiang J, Siddiqui A (2014) High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. Am J Neuroradiol 35(7):1254–1262

    Article  Google Scholar 

  • Mikhal J, Geurts BJ (2011) Pulsatile flow in model cerebral aneurysms. Procedia Comput Sci 4:811–820

    Article  Google Scholar 

  • Moncada SRMJ, Palmer RML, Higgs E (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43(2):109–142

    Google Scholar 

  • Mulder G, Bogaerds AC, Rongen P, van de Vosse FN (2009) On automated analysis of flow patterns in cerebral aneurysms based on vortex identification. J Eng Math 64(4):391

    Article  MATH  Google Scholar 

  • Nadar-Sepahi A, Casimiro M, Sen J, Kitchen ND (2004) Is aspect ratio a reliable predictor of intracranial aneurysm rupture? Neurosurgery 54:1343–1348

    Article  Google Scholar 

  • Najjari MR, Plesniak MW (2016) Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids. In: APS meeting abstracts

  • Nakatani H, Hashimoto N, Kang Y, Yamazoe N, Kikuchi H et al (1991) Cerebral blood flow patterns at major vessel bifurcations and aneurysms in rats. J Neurosurg 74:258–262

    Article  Google Scholar 

  • Okano M, Yoshida Y (1992) Influence of shear stress on endothelial cell shapes and junction complexes at flow dividers of aortic bifurcations in cholesterol-fed rabbits. Front Med Biol Eng 5(2):95–120

    Google Scholar 

  • Okano M, Yoshida Y (1994) Junction complexes of endothelial cells in atherosclerosis-prone and atherosclerosis-resistant regions on flow dividers of brachiocephalic bifurcations in the rabbit aorta. Biorheology 31(2):155–161

    Article  Google Scholar 

  • Omodaka S, Sugiyama S, Inoue T, Funamoto K, Fujimura M, Shimizu H et al (2012) Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Cerebrovasc Dis 34(2):121–129

    Article  Google Scholar 

  • Parashar A, Singh R, Panigrahi PK, Muralidhar K (2013) Chaotic flow in an aortic aneurysm. J Appl Phys 113(21):214909

    Article  Google Scholar 

  • Patel S, Usmani AY, Muralidhar K (2017) Effect of aorto-iliac bifurcation and iliac stenosis on flow dynamics in an abdominal aortic aneurysm. Fluid Dyn Res 49(3):035513

    Article  Google Scholar 

  • Poelma C, Watton PN, Ventikos Y (2015) Transitional flow in aneurysms and the computation of haemodynamic parameters. J R Soc Interface 12(105):20141394

    Article  Google Scholar 

  • Sato Y, Kakino S, Ogasawara K, Kubo Y, Kuroda H, Ogawa A (2008) Rupture of a concomitant unruptured cerebral aneurysm within 2 weeks of surgical repair of a ruptured cerebral aneurysm-case report. Neurol Med Chir 48(11):512–514

    Article  Google Scholar 

  • Schievink WI (1997) Intracranial aneurysms. N Engl J Med 336:28–40

    Article  Google Scholar 

  • Sforza DM, Putman CM, Cebral JR (2009) Hemodynamics of cerebral aneurysms. Annu Rev Fluid Mech 41:91–107

    Article  MATH  Google Scholar 

  • Sho E, Sho M, Singh TM, Xu C, Zarins C, Masuda H (2001) Blood flow decrease induces apoptosis of endothelial cells in previously dilated arteries resulting from chromic high blood flow. Arterioscler Thromb Vasc Biol 21:1139–1145

    Article  Google Scholar 

  • Shojima M, Oshima M, Takagi K, Torii R, Hayakawa M, Katada K et al (2004) Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35(11):2500–2505

    Article  Google Scholar 

  • Steiger HJ, Reulen HJ (1986) Low frequency flow fluctuations in saccular aneurysms. Acta Neurochir 83(3):131–137

    Article  Google Scholar 

  • Steiger HJ, Poll A, Liepsch D, Reulen H-J (1987) Haemodynamic stress in lateral saccular aneurysms. Acta Neurochir 86(3–4):98–105

    Article  Google Scholar 

  • Steiger HJ, Liepsch DW, Poll A, Reulen HJ (1988) Hemodynamic stress in terminal saccular aneurysms: a laser-Doppler study. Heart Vessels 4(3):162–169

    Article  Google Scholar 

  • Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am J Neuroradiol 24(4):559–566

    Google Scholar 

  • Szikora I, Paal G, Ugron A (2008) Impact of aneurysmal geometryon intraaneurysmal flow: a computerized flow simulation study. Neuroradiology 50(5):411–442

    Article  Google Scholar 

  • Takao H, Murayama Y, Otsuka S, Qian Y, Mohamed A, Masuda S, Yamamoto M, Abe T (2012) Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation. Stroke 43(5):1436–1439

    Article  Google Scholar 

  • Tateshima S, Murayama Y, Villablanca JP, Morino T, Takahashi H, Yamauchi T, Tanishita K, Viñuela F (2001) Intraaneurysmal flow dynamics study featuring an acrylic aneurysm model manufactured using a computerized tomography angiogram as a mold. J Neurosurg 95(6):1020–1027

    Article  Google Scholar 

  • Tateshima S, Viñuela F, Villablanca JP, Murayama Y, Morino T, Nomura K, Tanishita K (2003) Three-dimensional blood flow analysis in a wide-necked internal carotid artery—ophthalmic artery aneurysm. J Neurosurg 99(3):526–533

    Article  Google Scholar 

  • Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26(3–4):336–347

    Article  MathSciNet  MATH  Google Scholar 

  • Ujiie H, Tamano Y, Sasaki K, Hori T (2001) Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery 48(3):495–502

    Article  Google Scholar 

  • Usmani AY, Muralidhar K (2016a) Oscillatory flow in an enlarged compliant vasculature. Biomed Phys Eng Express 2(2):025016

    Article  Google Scholar 

  • Usmani AY, Muralidhar K (2016b) Pulsatile flow in a compliant stenosed asymmetric model. Exp Fluids 57(12):186

    Article  Google Scholar 

  • Valencia A, Solis F (2006) Blood flow dynamics and arterial wall interaction in a saccular aneurysm model of the basilar artery. Comput Struct 84:1326–1337

    Article  Google Scholar 

  • Valencia A, Morales H, Rivera R, Bravo E, Galvez M (2008) Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index. Med Eng Phys 30(3):329–340

    Article  Google Scholar 

  • Valen-Sendstad K, Mardal KA, Mortensen M, Reif BAP, Langtangen HP (2011) Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm. J Biomech 44(16):2826–2832

    Article  Google Scholar 

  • Weir B (1987) Aneurysms affecting the nervous system. Williams & Wilkins Co., Baltimore

    Google Scholar 

  • Weir B (2002) Unruptured intracranial aneurysms: a review. J Neurosurg 96(1):3–42

    Article  Google Scholar 

  • Wiebers DO, Piepgras DG, Meyer FB, Kallmes DF, Meissner I, Atkinson JL, Link MJ, Brown RD (2004) Pathogenesis, natural history, and treatment of unruptured intracranial aneurysms. In: Mayo clinic proceedings, vol 79, No. 12, pp 1572–1583. Elsevier

  • Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy EI, Meng H (2011) Hemodynamic–morphologic discriminants for intracranial aneurysm rupture. Stroke 42(1):144–152

    Article  Google Scholar 

  • Xu L, Sugawara M, Tanaka G, Ohta M, Liu H, Yamaguchi R (2016) Effect of elasticity on wall shear stress inside cerebral aneurysm at anterior cerebral artery. Technol Health Care 24(3):349–357

    Article  Google Scholar 

  • Yagi T, Sato A, Shinke M, Takahashi S, Tobe Y, Takao H, Murayama Y, Umezu M (2013) Experimental insights into flow impingement in cerebral aneurysm by stereoscopic particle image velocimetry: transition from a laminar regime. J R Soc Interface 10(82):20121031

    Article  Google Scholar 

  • Zakaria H, Robertson AM, Kerber CW (2008) A parametric model for studies of flow in arterial bifurcations. Ann Biomed Eng 36(9):1515

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Muralidhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usmani, A.Y., Muralidhar, K. Flow in an intracranial aneurysm model: effect of parent artery orientation. J Vis 21, 795–818 (2018). https://doi.org/10.1007/s12650-018-0491-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-018-0491-5

Keywords

Navigation