Skip to main content
Log in

Heat transfer and flow visualization of swirling impinging jet on flat surface using helicoid inserts

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

The heat transfer and flow structure of swirling impinging jet on a flat surface with helicoid inserts are experimentally and numerically analyzed. The study is focused on flow dynamics intended to describe the influence of swirl on the mechanics of impingement by varying the number of helicoid surfaces named as single, double, and triple helicoid inserts. A helicoid surface may be considered as having an infinite number of adjacent helical curves that rotates symmetrically about Z axis. The thermochromic liquid sheet and oil film technique are used to visualize the heat transfer characteristics and flow structure on the impinging surface, respectively. The numerical analysis is carried out for Swirl number Sw = 0.75 and Reynolds number value of 23,000 and for jet exit to impinging surface distance of H/D = 1, 2, 3, 4 using CFD. The flow characteristics of swirling jet are also compared with circular impinging jet. The flow characteristics are presented in terms of axial velocity variation and the distribution of vorticity and velocity vectors are also visualized. In addition turbulent statistics are also presented. The axial component of velocity of jet leaving triple helicoid at the stagnation region is relatively lower than single and double helicoids due to the presence of axial recirculation zones and the tangential velocity component of triple helicoid is higher in the region which corresponds to radial distance r/D = 0–0.4, 0–0.8, and 0–1.4 at H/D = 1, 2, and 3, respectively, compared with single and double helicoids. The axial velocity component exhibits flat profile for the single and double helicoids at increased H/D distances (H/D = 4). The vorticity distribution is relatively more intense for triple helicoid at the downstream of jet near the wall jet region causing it to entrain more ambient air compared with single and double helicoids.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Area of stainless steel foil, m2

D :

Inner diameter of jet exit pipe (outer diameter of vane), m

\(d\) :

Vane hub diameter, m

H :

Jet exit to impinging surface distance, m

H/D :

Dimensionless distance of jet exit to impinging surface

h :

Convective heat transfer coefficient, W/m2 K

k air :

Thermal conductivity of air, W/m K

Nu :

Nusselt number, dimensionless = \(\frac{h D}{{ k_{\text{air}} }}\)

Re :

Reynolds number, dimensionless = \(\frac{{U_{0} D}}{\gamma }\)

r :

Radial distance on the impinging surface, m

r/D :

Dimensionless radial distance on the impinging surface

Sw :

Swirl number, Dimensionless = \(\frac{2}{3}\left[ {\frac{{1 - \left( {\frac{d}{D}} \right)^{3} }}{{1 - \left( {\frac{d}{D}} \right)^{2} }}} \right]\tan \theta\)

Sh:

Single helicoid

Dh:

Double helicoid

Th:

Triple helicoid

\(T_{s}\) :

Local impinging surface temperature, K

\(T_{\text{j}}\) :

Jet exit temperature, K

ur’:

Root mean square of radial velocity fluctuations, m/s

\(U_{0}\) :

Mean velocity of air in the smooth pipe, m/s

γ :

Kinematic viscosity of air, m2/s

θ :

Helicoid vane angle, degrees

\(\sigma\) :

Standard deviation of Nusselt number over the impinging surface

\(\bar{\sigma }\) :

Normalized standard deviation

References

  • Ahmed ZU, Al-Abdeli YM, Matthews MT (2015) The effect of inflow conditions on the development of non-swirling versus swirling impinging turbulent jets. Comput Fluids 118:255–273

    Article  Google Scholar 

  • Alekseenko SV, Bilsky AV (2007) Experimental study of an impinging jet with different swirl rates. Int J Heat Fluid Flow 28:1340–1359

    Article  Google Scholar 

  • Alimohammadi S, Murray DB, Persoons T (2014) Experimental validation of a computational fluid dynamics methodology for transitional flow heat transfer characteristics of a steady impinging jet. J Heat Transf 136:1–9

    Article  Google Scholar 

  • Ansys CFX (2011) Solver modeling guide, Release 14.0. Ansys Inc., Canonsburg

    Google Scholar 

  • Bakirci K, Bilen K (2007) Visualization of heat transfer for impinging swirl flow. Exp Thermal Fluid Sci 32:182–191

    Article  Google Scholar 

  • Cafiero G, Discetti S, Astarita T (2014) Heat transfer enhancement of impinging jets with fractal generated turbulence. Int J Heat Mass Transf 75:173–183

    Article  Google Scholar 

  • Caggese O, Gnaegi G, Hannema G, Terzis A, Ott P (2013) Experimental and numerical investigation of a fully confined impingement round jet. Int J Heat Mass Transf 65:873–882

    Article  Google Scholar 

  • Chigier NA, Chervinsky A (1967) Experimental investigation of swirling vortex Motion in Jets. J Appl Mech 34(2):443–451

    Article  Google Scholar 

  • Deo RC, Mi J, Nathan GJ (2007) The influence of nozzle exit geometric profile on statistical properties of a turbulent plane jet. Exp Thermal Fluid Sci 32:545–559

    Article  Google Scholar 

  • Eiamsa-ard S, Nanan K, Wongcharee K (2015) Heat transfer visualization of co/counter-dual swirling impinging jets by thermo chromic liquid crystal method. Int J Heat Mass Transf 86:600–621

    Article  Google Scholar 

  • Faghani E, Maddahian R, Faghani P, Farhanieh B (2010) Numerical investigation of turbulent free jet flows issuing from rectangular nozzles: the influence of small aspect ratio. Arch Appl Mech 80:727–745

    Article  MATH  Google Scholar 

  • Fairweather M, Hargrave GK (2002) Experimental investigation of an axisymmetric impinging turbulent jet 1 velocity field. Exp Fluids 33:464–471

    Article  Google Scholar 

  • Fenot M, Dorignac E, Lalizel G (2015) Heat transfer and flow structure of a multichannel impinging jet. Int J Therm Sci 90:323–338

    Article  Google Scholar 

  • Ferdman E, Otugen MV, Kim S (2000) Effect of initial velocity profile on the development of round jets. J Propul Power 16:676–686

    Article  Google Scholar 

  • Geers LFG, Tummers MJ, Bueninck TJ, Hanjalic K (2008) Heat transfer correlation for hexagonal and in-line arrays of impinging jets. Int J Heat Mass Transf 51:5389–5399

    Article  MATH  Google Scholar 

  • Gonzalez RC, Woods RE, Eddins SL (2013) Digital image processing using MATLAB, 2nd edn. McGraw Hill Education, India

    Google Scholar 

  • Gupta AK, Lilley DG, Syred N (1984) Swirl Flows. Abacus Press, Massachusetts

    Google Scholar 

  • Heck U, Fritsching K, Bauckhage K (2001) Fluid flow and heat transfer in gas jet quenching of a cylinder. Int J Numer Methods Heat Fluid Flow 11:36–49

    Article  MATH  Google Scholar 

  • Herrada MA, Del Pino C (2009) Confined swirling jet impingement on a flat plate at moderate Reynolds numbers. Phys Fluids 21:1–9

    MATH  Google Scholar 

  • Holman JP (2007) Experimental methods for engineers, 7th edn. McGraw Hill Education, India

    Google Scholar 

  • Huang L, El-Genk MS (1998) Heat transfer and flow visualization experiments of swirling, multi-channel, and conventional impinging jets. Int J Heat Mass Transf 41:583–600

    Article  Google Scholar 

  • Ianiro A, Cardone G (2012) Heat transfer rate and uniformity in multichannel swirling impinging jets. Appl Therm Eng 49:89–98

    Article  Google Scholar 

  • Karuppa Raj T, Ganesan V (2009) Experimental study of recirculating flow induced by vane swirler. Indian J Eng Mater Sci 16:14–22

    Google Scholar 

  • Laschefski H, Cziesla T, Mitra NK (1995) Influence of exit angle on radial jet reattachment and heat transfer. J Thermo Phys Heat Transf 9:169–174

    Article  MATH  Google Scholar 

  • Lee D, Won S, Kim Y, Chung YS (2002) Turbulent heat transfer from a flat surface to a swirling round impinging jet. Int J Heat Mass Transf 45:223–227

    Article  Google Scholar 

  • Liu Z, Li J, Feng Zhenping (2014) Numerical study of swirl cooling in a turbine blade leading edge model. J Thermo Phys Heat Transf 29:166–178

    Article  Google Scholar 

  • Livingood JNB, Hrycak P (1973) Impingement heat transfer from turbulent air stream jets to flat plates—a literature survey, NASA TM X-2778

  • Mahmood M (1980) Heat transfer from swirling impinging jets. Ph.D thesis, Cranfield Institute of Technology

  • Nathan J, Mi GJ (2010) Statistical properties of turbulent free jets issuing from nine differently shaped nozzles. Flow Turbul Combust 84:583–606

    Article  MATH  Google Scholar 

  • Obot NT, Graska ML, Trabold TA (1984) The near field behavior of round jets at moderate Reynolds numbers. Can J Chem Eng 62:587–593

    Article  Google Scholar 

  • Ortega Casanova J (2012) CFD and correlations of the heat transfer from a wall at constant temperature to an impinging swirling jet. Int J Heat Mass Transf 55:5836–5845

    Article  Google Scholar 

  • Page RH (1991) Heat and mass transfer as a consequence on radial jet reattachment. Transport phenomena in heat and mass transfer, 1st edn. Elsevier Science Publisher B.V., Amsterdam, pp 432–443

  • Ramezanpour A, Mirzaee I, Firth D, Shirvani H (2007) A numerical heat transfer study of slot jet impinging on an inclined plat. Int J Numer Meth Heat Fluid Flow 17:661–676

    Article  Google Scholar 

  • Rodriguez SB (2011) Swirling jets for the mitigation of hot spots and thermal stratification in the VHTR lower plenum. Sandia report. Sandia National Laboratories, Albuquerque

    Book  Google Scholar 

  • Rodrigueza SB, El-Genk MS (2010) Numerical investigation of potential elimination of hot streaking and stratification in the VHTR lower plenum using helicoid inserts. Nucl Eng Des 240:995–1004

    Article  Google Scholar 

  • Senda M, Inaoka K, Toyoda D, Sato S (2005) Heat transfer and fluid flow characteristics in a swirling impinging jet. Heat Transf Asian Res 34:324–335

    Article  Google Scholar 

  • Shuja SZ, Yilbas BS, Budair MO (2005) Influence of conical and annular nozzle geometric configurations on flow and heat transfer characteristics due to flow impingement onto a flat plate. Numer Heat Transf A 48:917–939

    Article  Google Scholar 

  • Suresh V, Garimella BN (1996) Nozzle geometry effects in liquid jet impingement heat transfer. Int J Heat Mass Transf 39:2915–2923

    Article  Google Scholar 

  • Tadhg S O’Donovan (2005) Fluid flow and heat transfer of an impinging air jet. Ph.D thesis, University of Dublin

  • Viskanta R (1993) heat transfer to impinging isothermal gas and flame jets. Exp Thermal Fluid Sci 6:111–134

    Article  Google Scholar 

  • Wang T, Lin M, Bunker RS (2005) Flow and heat transfer of confined impingement jets cooling using a 3-D transient liquid crystal scheme. Int J Heat Mass Transf 48:4887–4903

    Article  Google Scholar 

  • Wannassi M, Monnoyer F (2015) Fluid flow and convective heat transfer of combined swirling and straight impinging jet arrays. Appl Therm Eng 78:62–73

    Article  Google Scholar 

  • Xu G, Antonia RA (2002) Effect of different initial conditions on a turbulent round free jet. Exp Fluids 33:677–683

    Article  Google Scholar 

  • Yan WM, Mei SC, Liu HC, Soong CY, Yang WJ (2004) Measurement of detailed heat transfer on a surface under arrays of impinging elliptic jets by a transient liquid crystal technique. Int J Heat Mass Transf 47:5235–5245

    Article  Google Scholar 

  • Yuan ZX, Chen YY, Jiang JG, Ma CF (2006) Swirling effect of jet impingement on heat transfer from a flat surface to CO2 stream. Exp Thermal Fluid Sci 31:55–60

    Article  Google Scholar 

  • Zhuyun X, Hangan H (2008) Scale, boundary and inlet condition effects on impinging jets. J Wind Eng Ind Aerodyn 96:2383–2402

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohamed Illyas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed Illyas, S., Ramesh Bapu, B.R. & Venkata Subba Rao, V. Heat transfer and flow visualization of swirling impinging jet on flat surface using helicoid inserts. J Vis 21, 729–749 (2018). https://doi.org/10.1007/s12650-018-0493-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-018-0493-3

Keywords

Navigation